The transformation of carbon–hydrogen (C–H) bonds into diverse classes of carbon–carbon (C–C) and carbon–heteroatom (C–X) bonds is a cornerstone of organic synthesis. There is intense interest in the discovery of new strategies for regioselective C–H functionalization.1 A daunting challenge is imposed by the innate inertness of C–H bonds combined with the subtle reactivity differences among the C–H bonds of a given substrate. Directing group (DG)-assisted transition metal-catalyzed C–H activation has proven a successful strategy for regioselective C–H functionalizations in a general and predictable manner.2 Most commonly coordination of a directing group to a transition metal to form a kinetically and thermodynamically stable 5- or 6-membered metallacycle is used to achieve ortho-C–H functionalization. In sharp contrast, distal C–H activation of meta3 and para4 sites is more challenging. In particular, para-C–H activation, which entails the formation of large macrocyclophane type metallacyclic intermediates, has remained elusive.5 In a recent breakthrough, palladium-catalyzed systems employing a carefully designed ‘D-shaped’ directing group/linker template, based on a cyanobiphenyl motif, led to the first examples of distal para-C–H olefinations and acetoxylations.5,6 Subsequent modifications of the 1st generation DGs through steric and electronic tuning led to 2nd generation DGs capable of effecting para-selective silylations7 and acylations.8
To the best of our knowledge, for template assisted para-selective functionalization palladium catalysis has been employed so far; albeit, other transition metals are also known to deliver para-selective functionalization relying on steric and electronic governance.5–9 As part of our ongoing interest in C–H functionalization, we have now translated this reaction into the realm of rhodium catalysis and we report here the first example of a Rh-catalyzed para-C–H olefination. Existing Rh-catalyzed approaches to C–H activation,10 using Rh(i)/Rh(iii) redox cycles, are complementary to the Pd(0)/Pd(ii) or Pd(ii)/Pd(iv) cycles prevalent in palladium catalysis. The use of Rh offers benefits over Pd: (a) in contrast to Pd catalysis, which usually requires super-stoichiometric quantities of silver salts, Rh catalysis can be performed with alternative, often cheaper, oxidants; (b) compared with Pd catalysis, which employ monoprotected amino acids (MPAA) as ligands, the different coordination environment of Rh is expected to provide advantageous opportunities for stereoselective synthesis; and (c) importantly, Rh-catalysis does not require use of hexafluoroisopropanol (HFIP), often unavoidable in Pd-catalysed distal C–H activation. With these thoughts in mind, we set about examining a Rh-catalyzed, DG-assisted distal para-C–H olefination, as shown in Scheme 1.
Scheme 1
Rh-catalyzed para-C–H olefination.
We commenced with the olefination of toluene scaffold DG1 by ethyl acrylate (Scheme 2). Our first attempt, using [Rh(COD)Cl]2 (5 mol%) as catalyst, N-Ac-Gly-OH (10 mol%) as ligand, and AgOAc (3 equiv.) as oxidant, was unsuccessful. However, use of copper trifluoroacetate [Cu(TFA)2] as oxidant with V2O5 as a co-oxidant provided the desired para-olefinated product in 30% yield. Encouraged by this initial result, we examined how the outcome could be improved by modifying the DG (Scheme 2). Analysis of cyano-based DGs (DG1–DG5) showed that the presence of an electron-withdrawing fluorine substituent (DG2) diminished the yield to 15% whereas an electron donating methoxy group (DG3) elevated the yield to 38%. By further enhancing the electron richness of the DG, the piperonal derivative DG4 afforded a 42% yield of the olefinated product. The dimethoxy-substituted DG5 gave a further improvement in yield, to 62%, with 15 : 1 para selectivity. The strong σ-donating DGs DG6–DG8 failed to provide any of the desired olefinated products. A range of different tethers, containing carbonyl (T1), sulfonyl (T2), and silyl (T3) linkers, were tested, as was a nitrile-free biphenyl template (T4); only the silyl based template T3 successfully delivered the desired olefinated product under the Rh-catalyzed conditions. These results indicate that the combination of sterically bulky silyl linker, nitrile group, and alkoxy groups present in DG5 is crucial for obtaining good yields of the para-olefinated product.
Using best-performing directing group DG5, we optimized the reaction with respect to oxidants. A wide variety of silver and copper salts were tested.11 In contrast to Pd-catalyzed olefinations, silver salts were found to be ineffectual in these Rh-catalyzed reactions, delivering the olefinated products in only trace amounts. Use of Cu(TFA)2 as the oxidant in conjunction with V2O5 as a co-oxidant gave a 62% yield of olefinated product with excellent (15 : 1) para selectivity. Use of CuCl2 provided a lower (30%) yield of product, but a combination of CuCl2, V2O5 and trifluoroacetic acid (TFA) furnished the olefinated product in excellent (85%) yield, with 15 : 1 para selectivity.11 Interestingly, in the absence of either V2O5 or TFA, the yield was significantly lower (40% and 30%, respectively). Other acidic additives such as acetic acid (AcOH), triflic acid (CF3SO3H) and pivalic acid (Piv–OH) failed to yield the para-olefinated product.11
With optimized conditions in hand, we explored the scope of the reaction with respect to olefin (Table 1), arene (Tables 2 and 3), and benzylic substituents (Table 4). With respect to the olefin coupling partner (Table 1), a range of acrylates reacted efficiently, including alkyl acrylates 2a–2d, cyclohexyl acrylate 2e, and trifluoroethyl acrylate 2f. The olefinated products were obtained in excellent yields with synthetically useful para-selectivities ranging from 7 : 1 to 15 : 1. Apart from acrylates, vinyl sulfones including methyl vinyl sulfone (2g) and phenyl vinyl sulfone (2h) also gave the olefinated products, in 48% and 62% yields, respectively.
aRatio of para: others determined by the 1H NMR of crude reaction mixture.
Table 2
Scope of monosubstituted toluene derivativesa11
aRatio of para: others determined by the 1H NMR of crude reaction mixture.
Table 3
Scope of disubstituted toluene derivatives in Rh-catalyzed para-C–H olefinationa11
aRatio of para: others determined by the 1H NMR of crude reaction mixture.
Table 4
Scope of α-substituted toluene derivatives and more complex olefin coupling partnersa11
aRatio of para: others determined by the 1H NMR of crude reaction mixture.
Next an array of substituted arenes was examined (Tables 2 and 3). For monosubstituted arenes, excellent yields and selectivities were obtained irrespective of the electronic nature of the substituent (Table 2). Both electron-rich and electron-deficient arenes were well tolerated, providing yields of up to 75% with upto 17 : 1 para selectivity.
Disubstituted arenes were also extremely well tolerated (Table 3). The reaction was successfully applied to a range of 2,2, 2,5, 3,5 and 2,6-disubstituted toluenes containing methyl, fluoro, and/or chloro substituents (6a–6q). The selectivities of these reactions were generally higher than those observed for monosubstituted arenes, with all ≥15 : 1 para selective. Even a tetramethyl-substituted arene was tolerated, reacting with ethyl acrylate to give 6r in 61% yield.
The protocol is also applicable to α-substituted toluene derivatives (Table 4). Substrates bearing methyl, phenyl, or substituted phenyl substituents at the benzylic position reacted with methyl or ethyl acrylate to afford para-olefinated products 8a–8d. The reaction also worked well with a more complex olefin coupling partner, namely, the acrylate derived from cholesterol, which furnished 8e–8g in 59–68% yield.
The DG5 directing group can be readily removed from the olefinated product in several ways (Scheme 3). Treatment of 2b with TBAF furnished the desilylated product 9 in 92% yield and allowed the DG5 alcohol 10 to be recovered in 88% yield for reutilization. Alternatively, treatment of 2b with p-TSA generated the corresponding silanol derivative 11 in 82% yield along with an 85% recovery of the DG5 alcohol. In principle, silanol 11 could be further used as a directing group for ortho functionalization. Therefore, the silyl-linked DG5 represents a traceless directing group enabling access to multi-functionalized arenes. While the para-olefinated product 6g has been treated with KF, KHCO3 and H2O2, it produced the corresponding silanol (12). The silanol derivative was then employed under modified Tamao's oxidation condition to produce corresponding benzyl alcohol (13). Another derivative 2c was treated under similar condition to provide the benzyl alcohol which subsequently oxidized to the corresponding benzaldehyde derivative (14) in 76% yield. The silyl based template can act as a nucleophile in presence of TBAF. To demonstrate that, 4-nitrobenzaldehyde (15) and 2-naphthaldehyde (17) was treated with para-olefinated product 2e and 6c, respectively to produce corresponding benzyl alcohols (16 and 18 in 83% and 72%, respectively).
Scheme 3
Removal of the directing group and diversification of the para-olefinated products.11
Scheme 4
Experiments with a deuterium-labeled substrate.11
Isotope labeling experiments were conducted involving an intermolecular competition using substrate 1a and its deuterated analogue D7-1a and a PH/PD value of 2.9 and kH/kD value of 2.6 were obtained (Scheme 4).11 Furthermore, a detailed kinetic study indicated that the reaction was first order with respect to the substrate and zero order with respect to the olefin.11 Together, these results suggest that the C–H bond activation is likely to be the rate-determining step of the catalytic cycle. A plausible catalytic cycle for the para-olefination is shown in Scheme 5. In this mechanism, the Rh(i) catalyst precursor is first oxidized to Rh(iii). The main steps in the cycle consist of C–H activation, migratory insertion, β-hydride elimination, and reductive elimination.11
Scheme 5
Possible catalytic cycle for para-selective Rh-catalyzed olefination.
We explored the C–H activation process using density functional theory (DFT) (Fig. 1). Computations with the M06 functional using a model of DG1 with trifluoroacetate anion as the base predicted that the C–H bond activation follows an electrophilic aromatic substitution pathway, with a distinct intermediate Int1, rather than a concerted metalation–deprotonation pathway.10p,12 Transition structures for C–H bond breaking at the para and meta positions are shown in Fig. 1.
Fig. 1
Transition states for Rh(iii)-mediated para-C–H and meta-C–H bond activation, computed with M06/6-311+G(d,p)-SDD//M06/6-31G(d,p)-LANL2DZ in SMD dichloroethane. Distances in Å, ΔG‡rel in kcal mol−1.
The para transition state, TS1-para, is 6.5 kcal mol−1 lower in energy than the meta transition state TS1-meta. A fragment-based analysis of the TSs12 reveals that the preference for para-C–H activation is due to a β-silicon effect. The interaction of the arene with Rh(iii) endows it with arenium cation character, and this interaction is strengthened in TS1-para because the C–Si bond (which lies perpendicular to the ring) stabilizes the positive charge through hyperconjugation. Computations also revealed the roles of the DG methoxy and nitrile substituents.12 Incorporation of two methoxy groups on the DG activates the substrate toward C–H bond breaking, lowering the barrier by 1.6 kcal mol−1 relative to TS1-para. A TS in which the nitrile is not bound to Rh was computed to be 23 kcal mol−1 higher in energy than TS1-para, indicating that the coordination of the nitrile to Rh strongly stabilizes the C–H activation transition state.
Conclusions
In summary, herein we have reported the first example of a Rh-catalyzed distal para-C–H functionalization reaction. The Rh-catalyzed olefination of toluenes using the Si-linked DG5 directing group displays broad substrate tolerance. Electron-rich and electron-deficient arenes are coupled with electron-deficient olefins in high yield and selectivity. Mechanistic studies are consistent with a catalytic cycle in which the C–H bond activation is rate-determining. This work reveals the potential of Rh catalysis to diversify the scope of functionalizations in the realm of remote para-C–H activation.
Conflicts of interest
The authors declare no conflict of interest.
Acknowledgements
This activity is funded by CSIR, India. Financial support received from IITB-Monash Research Academy (fellowship to UD and SP), UGC-India (fellowship to SM), Australian Research Council (DP180103047 to E. H. K.), and the University of Queensland (fellowship to E. H. K.) is gratefully acknowledged. High-performance computing resources were provided by the Australian National Computational Infrastructure and the UQ Research Computing Centre. Helpful discussions with Dr Romain Lepage (UQ) are gratefully acknowledged.
Notes and references
(a)
S. H. Cho
, J. Y. Kim
, J. Kwak
and S. Chang
, Chem. Soc. Rev.,
2011, 40
, 5068 —5083
RSC
.
(b)
C. Jia
, T. Kitamura
and Y. Fujiwara
, Acc. Chem. Res.,
2001, 34
, 633 —639
CrossRefCASPubMed
.
(c)
N. Kuhl
, M. N. Hopkinson
, J. Wencel-Delord
and F. Glorius
, Angew. Chem., Int. Ed.,
2012, 51
, 10236 —10254
CrossRefCASPubMed
.
(d)
I. A. I. Mkhalid
, J. H. Barnard
, T. B. Marder
, J. M. Murphy
and J. F. Hartwig
, Chem. Rev.,
2010, 110
, 890 —931
CrossRefCASPubMed
.
(e)
I. V. Seregin
and V. Gevorgyan
, Chem. Soc. Rev.,
2007, 36
, 1173 —1193
RSC
.
(f)
C.-L. Sun
, B.-J. Li
and Z.-J. Shi
, Chem. Rev.,
2011, 111
, 1293 —1314
CrossRefCASPubMed
.
(g)
H. Yi
, G. Zhang
, H. Wang
, Z. Huang
, J. Wang
, A. K. Singh
and A. Lei
, Chem. Rev.,
2017, 117
, 9016 —9085
CrossRefCASPubMed
.
(h)
L. Ackermann
, R. Vicente
and A. R. Kapdi
, Angew. Chem., Int. Ed.,
2009, 48
, 9792 —9826
CrossRefCASPubMed
.
(i)
T. Gensch
, M. N. Hopkinson
, F. Glorius
and J. Wencel-Delord
, Chem. Soc. Rev.,
2016, 45
, 2900 —2936
RSC
.
(a)
L. AckermannAcc. Chem. Res.,
2014, 47
, 281 —295
CrossRefCASPubMed
.
(b)
P. B. Arockiam
, C. Bruneau
and P. H. Dixneuf
, Chem. Rev.,
2012, 112
, 5879 —5918
CrossRefCASPubMed
.
(c)
X. Chen
, K. M. Engle
, D.-H. Wang
and J.-Q. Yu
, Angew. Chem., Int. Ed.,
2009, 48
, 5094 —5115
CrossRefCASPubMed
.
(d)
O. Daugulis
, H.-Q. Do
and D. Shabashov
, Acc. Chem. Res.,
2009, 42
, 1074 —1086
CrossRefCASPubMed
.
(e)
K. M. Engle
and J.-Q. Yu
, J. Org. Chem.,
2013, 78
, 8927 —8955
CrossRefCASPubMed
.
(f)
R. Giri
, S. Thapa
and A. Kafle
, Adv. Synth. Catal.,
2014, 356
, 1395 —1411
CrossRefCAS
.
(g)
Z. Huang
, H. N. Lim
, F. Mo
, M. C. Young
and G. Dong
, Chem. Soc. Rev.,
2015, 44
, 7764 —7786
RSC
.
(h)
T. W. Lyons
and M. S. Sanford
, Chem. Rev.,
2010, 110
, 1147 —1169
CrossRefCASPubMed
.
(i)
S. R. Neufeldt
and M. S. Sanford
, Acc. Chem. Res.,
2012, 45
, 936 —946
CrossRefCASPubMed
.
(j)
M. Pichette Drapeau
and L. J. Gooßen
, Chem.–Eur. J.,
2016, 22
, 18654 —18677
CrossRefCASPubMed
.
(k)
A. Ros
, R. Fernandez
and J. M. Lassaletta
, Chem. Soc. Rev.,
2014, 43
, 3229 —3243
RSC
.
(l)
T. Satoh
and M. Miura
, Synthesis,
2011, 10.1055/s-0030-1258225
3395 —3409
Search PubMed
.
(m)
G. Shi
and Y. Zhang
, Adv. Synth. Catal.,
2014, 356
, 1419 —1442
CrossRefCAS
.
(n)
J. J. Topczewski
and M. S. Sanford
, Chem. Sci.,
2015, 6
, 70 —76
RSC
.
(o)
F. W. Patureau
, J. Wencel-Delord
and F. Glorius
, Aldrichimica Acta,
2013, 31 —41
Search PubMed
.
(p)
C. S. Yeung
and V. M. Dong
, Chem. Rev.,
2011, 111
, 1215 —1292
CrossRefCASPubMed
.
(q)
F. Zhang
and D. R. Spring
, Chem. Soc. Rev.,
2014, 43
, 6906 —6919
RSC
.
(r)
Z. Chen
, B. Wang
, J. Zhang
, W. Yu
, Z. Liu
and Y. Zhang
, Org. Chem. Front.,
2015, 2
, 1107 —1295
RSC
.
(s)
M. Zhang
, Y. Zhang
, X. Jie
, H. Zhao
, G. Li
and W. Su
, Org. Chem. Front.,
2014, 1
, 843 —895
RSC
.
(t)
S. Rej
and N. Chatani
, Angew. Chem., Int. Ed.,
2019, 58
, 2 —28
CrossRefPubMed
.
(u)
S. Murai
, F. Kakiuchi
, S. Sekine
, Y. Tanaka
, A. Kamatani
, M. Sonoda
and N. Chatani
, Nature,
1993, 366
, 529 —531
CrossRefCAS
.
(v)
F. Kakiuchi
and S. Murai
, Acc. Chem. Res.,
2002, 35
, 826 —834
CrossRefCASPubMed
.
(w)
Y. Ogiwara
, M. Tamura
, T. Kochi
, Y. Matsuura
, N. Chatani
and F. Kakiuchi
, Organometallics,
2014, 33
, 402 —420
CrossRefCAS
.
(x)
F. Kakiuchi
, T. Kochi
, E. Mizushima
and S. Murai
, J. Am. Chem. Soc.,
2010, 132
, 17741 —17750
CrossRefCASPubMed
.
(a)
H. Shi
, P. Wang
, S. Suzuki
, M. E. Farmer
and J.-Q. Yu
, J. Am. Chem. Soc.,
2016, 138
, 14876 —14879
CrossRefCASPubMed
.
(b)
H.-J. Xu
, Y. Lu
, M. E. Farmer
, H.-W. Wang
, D. Zhao
, Y.-S. Kang
, W.-Y. Sun
and J.-Q. Yu
, J. Am. Chem. Soc.,
2017, 139
, 2200 —2203
CrossRefCASPubMed
.
(c)
H.-J. Xu
, Y.-S. Kang
, H. Shi
, P. Zhang
, Y.-K. Chen
, B. Zhang
, Z.-Q. Liu
, J. Zhao
, W.-Y. Sun
, J.-Q. Yu
and Y. Lu
, J. Am. Chem. Soc.,
2019, 141
, 76 —79
CrossRefCASPubMed
.
(d)
S. Lee
, H. Lee
and K. L. Tan
, J. Am. Chem. Soc.,
2013, 135
, 18778 —18781
CrossRefCASPubMed
.
(e)
S. Li
, L. Cai
, H. Ji
, L. Yang
and G. Li
, Nat. Commun.,
2016, 7
, 10443 —10450
CrossRefPubMed
.
(f)
S. Li
, H. Ji
, L. Cai
and G. Li
, Chem. Sci.,
2015, 6
, 5595 —5600
RSC
.
(g)
R.-J. Mi
, Y.-Z. Sun
, J.-Y. Wang
, J. Sun
, Z. Xu
and M.-D. Zhou
, Org. Lett.,
2018, 20
, 5126 —5129
CrossRefCASPubMed
.
(h)
L. Zhang
, C. Zhao
, Y. Liu
, J. Xu
, X. Xu
and Z. Jin
, Angew. Chem., Int. Ed.,
2017, 56
, 12245 —12249
CrossRefCASPubMed
.
(i)
S. Bag
, R. Jayarajan
, U. Dutta
, R. Chowdhury
, R. Mondal
and D. Maiti
, Angew. Chem., Int. Ed.,
2017, 56
, 12538 —12542
CrossRefCASPubMed
.
(j)
M. Bera
, S. Agasti
, R. Chowdhury
, R. Mondal
, D. Pal
and D. Maiti
, Angew. Chem., Int. Ed.,
2017, 56
, 5272 —5276
CrossRefCASPubMed
.
(k)
M. Bera
, A. Maji
, S. K. Sahoo
and D. Maiti
, Angew. Chem., Int. Ed.,
2015, 54
, 8515 —8519
CrossRefCASPubMed
.
(l)
U. Dutta
, A. Modak
, B. Bhaskararao
, M. Bera
, S. Bag
, A. Mondal
, D. W. Lupton
, R. B. Sunoj
and D. Maiti
, ACS Catal.,
2017, 7
, 3162 —3168
CrossRefCAS
.
(m)
R. Jayarajan
, J. Das
, S. Bag
, R. Chowdhury
and D. Maiti
, Angew. Chem., Int. Ed.,
2018, 57
, 7659 —7663
CrossRefCASPubMed
.
(n)
A. Modak
, T. Patra
, R. Chowdhury
, S. Raul
and D. Maiti
, Organometallics,
2017, 36
, 2418 —2423
CrossRefCAS
.
(o)
D. Leow
, G. Li
, T.-S. Mei
and J.-Q. Yu
, Nature,
2012, 486
, 518 —522
CrossRefCASPubMed
.
(p)
R.-Y. Tang
, G. Li
and J.-Q. Yu
, Nature,
2014, 507
, 215 —220
CrossRefCASPubMed
.
(q)
L. Chu
, M. Shang
, K. Tanaka
, Q. Chen
, N. Pissarnitski
, E. Streckfuss
and J.-Q. Yu
, ACS Cent. Sci.,
2015, 1
, 394 —399
CrossRefCASPubMed
.
(r)
Z. Jin
, L. Chu
, Y.-Q. Chen
and J.-Q. Yu
, Org. Lett.,
2018, 20
, 425 —428
CrossRefCASPubMed
.
(s)
R. J. Phipps
and M. J. Gaunt
, Science,
2009, 323
, 1593 —1597
CrossRefCASPubMed
.
(t)
H. A. Duong
, R. E. Gilligan
, M. L. Cooke
, R. J. Phipps
and M. J. Gaunt
, Angew. Chem., Int. Ed.,
2011, 50
, 463 —466
CrossRefCASPubMed
.
(u)
J. A. Leitch
, Y. Bhonoah
and C. G. Frost
, ACS Catal.,
2017, 7
, 5618 —5627
CrossRefCAS
.
(v)
O. Saidi
, J. Marafie
, A. E. W. Ledger
, P. M. Liu
, M. F. Mahon
, G. Kociok-Köhn
, M. K. Whittlesey
and C. G. Frost
, J. Am. Chem. Soc.,
2011, 133
, 19298 —19301
CrossRefCASPubMed
.
(w)
N. Hofmann
and L. Ackermann
, J. Am. Chem. Soc.,
2013, 135
, 5877 —5884
CrossRefCASPubMed
.
(x)
J. Li
, S. Warratz
, D. Zell
, S. De Sarkar
, E. E. Ishikawa
and L. Ackermann
, J. Am. Chem. Soc.,
2015, 137
, 13894 —13901
CrossRefCASPubMed
.
(y)
F. Fumagalli
, S. Warratz
, S.-K. Zhang
, T. Rogge
, C. Zhu
, A. C. Stückl
and L. Ackermann
, Chem.–Eur. J.,
2018, 24
, 3984 —3988
CrossRefCASPubMed
.
(z)
M. T. Mihai
, H. J. Davis
, G. R. Genov
and R. J. Phipps
, ACS Catal.,
2018, 8
, 3764 —3769
CrossRefCAS
.
(a)
M. T. Mihai
, G. R. Genov
and R. J. Phipps
, Chem. Soc. Rev.,
2018, 47
, 149 —171
RSC
.
(a)
R. FerraccioliSynthesis,
2013, 45
, 581 —591
CrossRefCAS
.
(a)
M. Catellani
, F. Frignani
and A. Rangoni
, Angew. Chem., Int. Ed.,
1997, 36
, 119 —122
CrossRefCAS
.
(a)
F. Faccini
, E. Motti
and M. Catellani
, J. Am. Chem. Soc.,
2004, 126
, 78 —79
CrossRefCASPubMed
.
(a)
Z. Dong
and G. Dong
, J. Am. Chem. Soc.,
2013, 135
, 18350 —18353
CrossRefCASPubMed
.
(a)
Z. Dong
, J. Wang
and G. Dong
, J. Am. Chem. Soc.,
2015, 137
, 5887 —5890
CrossRefCASPubMed
.
(a)
Z. Dong
, J. Wang
, Z. Ren
and G. Dong
, Angew. Chem., Int. Ed.,
2015, 54
, 12664 —12668
CrossRefCASPubMed
.
(a)
X.-C. Wang
, W. Gong
, L.-Z. Fang
, R.-Y. Zhu
, S. Li
, K. M. Engle
and J.-Q. Yu
, Nature,
2015, 519
, 334 —338
CrossRefCASPubMed
.
(a)
G.-C. Li
, P. Wang
, M. E. Farmer
and J.-Q. Yu
, Angew. Chem., Int. Ed.,
2017, 56
, 6874 —6877
CrossRefCASPubMed
.
(a)
Y. Kuninobu
, H. Ida
, M. Nishi
and M. Kanai
, Nat. Chem.,
2015, 7
, 712 —717
CrossRefCASPubMed
.
(a)
R. Bisht
and B. Chattopadhyay
, J. Am. Chem. Soc.,
2016, 138
, 84 —87
CrossRefCASPubMed
.
(a)
J.-Y. Cho
, M. K. Tse
, D. Holmes
, R. E. Maleczka
and M. R. Smith
, Science,
2002, 295
, 305 —308
CrossRefCASPubMed
.
(a)
T. Ishiyama
, J. Takagi
, K. Ishida
, N. Miyaura
, N. R. Anastasi
and J. F. Hartwig
, J. Am. Chem. Soc.,
2002, 124
, 390 —391
CrossRefCASPubMed
.
(a)
D. W. Robbins
and J. F. Hartwig
, Angew. Chem., Int. Ed.,
2013, 52
, 933 —937
CrossRefCASPubMed
.
(a)
B. E. Haines
, Y. Saito
, Y. Segawa
, K. Itami
and D. G. Musaev
, ACS Catal.,
2016, 6
, 7536 —7546
CrossRefCAS
.
(b)
M. E. Hoque
, R. Bisht
, C. Haldar
and B. Chattopadhyay
, J. Am. Chem. Soc.,
2017, 139
, 7745 —7748
CrossRefCASPubMed
.
(c)
J. A. Leitch
, C. L. McMullin
, A. J. Paterson
, M. F. Mahon
, Y. Bhonoah
and C. G. Frost
, Angew. Chem., Int. Ed.,
2017, 56
, 15131 —15135
CrossRefCASPubMed
.
(d)
S. Okumura
and Y. Nakao
, Org. Lett.,
2017, 19
, 584 —587
CrossRefCASPubMed
.
(e)
L. Yang
, K. Semba
and Y. Nakao
, Angew. Chem., Int. Ed.,
2017, 56
, 4853 —4857
CrossRefCASPubMed
.
(f)
C. Tian
, X. Yao
, W. Ji
, Q. Wang
, G. An
and G. Li
, Eur. J. Org. Chem.,
2018, 2018
, 5972 —5979
CrossRefCAS
.
(g)
L. Zhu
, X. Qi
, Y. Li
, M. Duan
, L. Zou
, R. Bai
and Y. Lan
, Organometallics,
2017, 36
, 2107 —2115
CrossRefCAS
.
S. Bag
, T. Patra
, A. Modak
, A. Deb
, S. Maity
, U. Dutta
, A. Dey
, R. Kancherla
, A. Maji
, A. Hazra
, M. Bera
and D. Maiti
, J. Am. Chem. Soc.,
2015, 137
, 11888 —11891
CrossRefCASPubMed
.
T. Patra
, S. Bag
, R. Kancherla
, A. Mondal
, A. Dey
, S. Pimparkar
, S. Agasti
, A. Modak
and D. Maiti
, Angew. Chem., Int. Ed.,
2016, 55
, 7751 —7755
CrossRefCASPubMed
.
A. Maji
, S. Guin
, S. Feng
, A. Dahiya
, V. K. Singh
, P. Liu
and D. Maiti
, Angew. Chem., Int. Ed.,
2017, 56
, 14903 —14907
CrossRefCASPubMed
.
A. Maji
, A. Dahiya
, G. Lu
, T. Bhattacharya
, M. Brochetta
, G. Zanoni
, P. Liu
and D. Maiti
, Nat. Commun.,
2018, 9
, 3582
CrossRefPubMed
.
(a)
L. T. Ball
, G. C. Lloyd-Jones
and C. A. Russell
, Science,
2012, 337
, 1644 —1648
CrossRefCASPubMed
.
(b)
C.-L. Ciana
, R. J. Phipps
, J. R. Brandt
, F.-M. Meyer
and M. J. Gaunt
, Angew. Chem., Int. Ed.,
2011, 50
, 458 —462
CrossRefCASPubMed
.
(c)
B. Berzina
, I. Sokolovs
and E. Suna
, ACS Catal.,
2015, 5
, 7008 —7014
CrossRefCAS
.
(d)
Z. Yu
, B. Ma
, M. Chen
, H.-H. Wu
, L. Liu
and J. Zhang
, J. Am. Chem. Soc.,
2014, 136
, 6904 —6907
CrossRefCASPubMed
.
(a)
D. A. Colby
, R. G. Bergman
and J. A. Ellman
, Chem. Rev.,
2010, 110
, 624 —655
CrossRefCASPubMed
.
(b)
D. A. Colby
, A. S. Tsai
, R. G. Bergman
and J. A. Ellman
, Acc. Chem. Res.,
2012, 45
, 814 —825
CrossRefCASPubMed
.
(c)
S. Cui
, Y. Zhang
and Q. Wu
, Chem. Sci.,
2013, 4
, 3421 —3426
RSC
.
(d)
C. Feng
, D. Feng
and T.-P. Loh
, Org. Lett.,
2013, 15
, 3670 —3673
CrossRefCASPubMed
.
(e)
T. K. Hyster
, L. Knörr
, T. R. Ward
and T. Rovis
, Science,
2012, 338
, 500 —503
CrossRefCASPubMed
.
(f)
N. Kuhl
, N. Schröder
and F. Glorius
, Adv. Synth. Catal.,
2014, 356
, 1443 —1460
CrossRefCAS
.
(g)
B. Li
, J. Ma
, W. Xie
, H. Song
, S. Xu
and B. Wang
, Chem.–Eur. J.,
2013, 19
, 11863 —11868
CrossRefCASPubMed
.
(h)
G. Li
, Z. Ding
and B. Xu
, Org. Lett.,
2012, 14
, 5338 —5341
CrossRefCASPubMed
.
(i)
X. Li
and M. Zhao
, J. Org. Chem.,
2011, 76
, 8530 —8536
CrossRefCASPubMed
.
(j)
B. Liu
, Y. Fan
, Y. Gao
, C. Sun
, C. Xu
and J. Zhu
, J. Am. Chem. Soc.,
2013, 135
, 468 —473
CrossRefCASPubMed
.
(k)
S. H. Park
, J. Y. Kim
and S. Chang
, Org. Lett.,
2011, 13
, 2372 —2375
CrossRefCASPubMed
.
(l)
N. K. Mishra
, J. Park
, S. Sharma
, S. Han
, M. Kim
, Y. Shin
, J. Jang
, J. H. Kwak
, Y. H. Jung
and I. S. Kim
, Chem. Commun.,
2014, 50
, 2350 —2352
RSC
.
(m)
K. Nobushige
, K. Hirano
, T. Satoh
and M. Miura
, Org. Lett.,
2014, 16
, 1188 —1191
CrossRefCASPubMed
.
(n)
F. W. Patureau
and F. Glorius
, J. Am. Chem. Soc.,
2010, 132
, 9982 —9983
CrossRefCASPubMed
.
(o)
M. Presset
, D. Oehlrich
, F. Rombouts
and G. A. Molander
, Org. Lett.,
2013, 15
, 1528 —1531
CrossRefCASPubMed
.
(p)
X. Qi
, Y. Li
, R. Bai
and Y. Lan
, Acc. Chem. Res.,
2017, 50
, 2799 —2808
CrossRefCASPubMed
.
(q)
Y. Shen
, G. Liu
, Z. Zhou
and X. Lu
, Org. Lett.,
2013, 15
, 3366 —3369
CrossRefCASPubMed
.
(r)
A. S. Tsai
, M. Brasse
, R. G. Bergman
and J. A. Ellman
, Org. Lett.,
2011, 13
, 540 —542
CrossRefCASPubMed
.
(s)
F. Wang
, G. Song
and X. Li
, Org. Lett.,
2010, 12
, 5430 —5433
CrossRefCASPubMed
.
(t)
X.-S. Zhang
, Q.-L. Zhu
, Y.-F. Zhang
, Y.-B. Li
and Z.-J. Shi
, Chem.–Eur. J.,
2013, 19
, 11898 —11903
CrossRefCASPubMed
.
(u)
J. Zhou
, B. Li
, F. Hu
and B.-F. Shi
, Org. Lett.,
2013, 15
, 3460 —3463
CrossRefCASPubMed
.
(v)
C. Zhu
and J. R. Falck
, Chem. Commun.,
2012, 48
, 1674 —1676
RSC
.
(w)
K. Shibata
, S. Natsui
and N. Chatani
, Org. Lett.,
2017, 19
, 2234 —2237
CrossRefCASPubMed
.
(x)
Y. Kita
, M. Tobisu
and N. Chatani
, Org. Lett.,
2010, 12
, 1864 —1867
CrossRefCASPubMed
.
We also considered several other mechanisms in which the CH bond cleavage step is mediated by either Rh(iii) or Rh(i), details are provided in the ESI.†
Footnote
†
Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc01824g