Ultrafast optical switching based on mutually enhanced resonance modes in gold nanowire gratings†
Abstract
We report an efficient ultrafast optical switching device consisting of periodically arranged gold nanowires, which were produced by the multistage deposition of colloidal gold nanoparticles into deep grooves, so that they are as high as 220 nm and continuous as long as 20 mm. Due to the large thickness of the gold nanowires, two resonance modes became efficient and mutually enhanced: the waveguide resonance mode and the Bragg microcavity resonance mode. These resonance modes are based on the same diffraction conditions and have a completely overlapped spectroscopic response. Thus, a sharp resonance mode with a large amplitude and a steep rising edge is observed in the optical extinction spectrum at normal incidence. Strong optical excitation induced a red shift of the resonance spectrum and resulted in an enhanced optical transmission spectrum with a narrow bandwidth and a high response speed. Such an optical switching device with new physics has potential applications in optical logic circuits and integrated optics.