Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy
Abstract
Two-dimensional (2D) nanocomposites have been widely used in biomedical applications during the past few years due to their extraordinary physicochemical properties, which has proved their importance in the field of nanomedicine. Benefiting from the excellent optical absorption in the near-infrared window and large specific surface area, many efforts have been devoted to fabricating 2D nanomaterial-based multifunctional nanoplatforms to realize photothermal therapy (PTT)-based or chemotherapy-based synergistic treatment, which exhibits obvious anti-tumor effects and significantly enhances the therapeutic efficiency of cancer compared with monotherapy. In particular, 2D nanocomposites are usually fabricated as intelligent nanoplatforms for stimuli-responsive nanocarriers, whose therapeutic effects could be specifically activated by the tumor microenvironment (TME). In addition, different fluorescent probes and functional inorganic nanomaterials could be absorbed on the surface of 2D nanomaterials to fabricate multifunctional hybrid nanomaterials with satisfactory magnetic, optical, or other properties that are widely used for multimodal imaging-guided cancer therapy. In this review, the latest development of multifunctional 2D nanocomposites for combination therapy is systematically summarized, mainly focusing on PTT-based synergistic cancer therapy, and the other forms and potential forms of synergistic cancer therapy are also simply summarized. Furthermore, the design principles of 2D nanocomposites are particularly emphasized, and the current challenges and future prospects of 2D nanocomposites for cancer theranostics are discussed simultaneously.
- This article is part of the themed collection: Recent Review Articles