Issue 40, 2019

Antenna array-enhanced attenuated total reflection IR analysis in an aqueous solution

Abstract

Attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) is a powerful technique that provides structural and functional information during dynamic reactions in aqueous solutions. One existing limitation is the sensitivity to extract the signals of trace-level analytes from the background water in situ and in real time. Here, we proposed a novel ATR-SEIRAS platform that integrated a large-scale triangle gold antenna array onto a conventional ATR-IR platform to increase the sensitivity of this analytical technique. A square centimeter level well-ordered gold antenna array was fabricated onto an Si prism via nanosphere lithography. The size-dependent antenna array resonance had weak correlation with the incident polarization and antenna orientation, allowing antenna array-enhanced IR detection without the requirement of a microscope. In addition, the antenna resonance shift that occurred due to analyte adsorption-induced refractive index variation could be minimized benefiting from the high refractive index of Si (3.4). As a demonstration, we dynamically monitored the adsorption of the trace levels of proteins on top of the antenna array with a real signal enhancement factor larger than 300. Our platform opens an avenue to apply antenna array-enhanced IR spectroscopy in an aqueous environment measured via commercial IR instruments, which is extremely promising for the interfacial applications that require signal enhancement.

Graphical abstract: Antenna array-enhanced attenuated total reflection IR analysis in an aqueous solution

Supplementary files

Article information

Article type
Communication
Submitted
12 May 2019
Accepted
22 Sep 2019
First published
23 Sep 2019

Nanoscale, 2019,11, 18543-18549

Antenna array-enhanced attenuated total reflection IR analysis in an aqueous solution

J. Li, Z. Yan, J. Li, Z. Wang, W. Morrison and X. Xia, Nanoscale, 2019, 11, 18543 DOI: 10.1039/C9NR04032C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements