Issue 36, 2019

Theoretical prediction of superconductivity in monolayer CoO2

Abstract

Motivated by the synthesis of the layered structure CoO2via Li atom deintercalation from LixCoO2, herein, we investigated the electronic structure, lattice dynamics, electron–phonon interaction, and superconductivity of monolayer CoO2 using first-principles calculations. This 2D material was predicted to have a ferromagnetic ground state with a metallic band structure and the total magnetization of 0.83μB. Remarkably, the non-spin polarized calculations show that the monolayer CoO2 possesses phonon-mediated superconductivity at 25–28 K owing to its intermediate to strong electron–phonon coupling (EPC). The rather strong EPC in this compound is mainly driven by the acoustic phonons, making this compound one of the highest-temperature superconductors among the existing 2D materials. Moreover, the CoO2 sheets could be synthesized via exfoliation from bulk CoO2 owing to the relatively small interlayer binding energy while maintaining its stability under normal experimental conditions. Compared to its bulk and bilayer counterparts, monolayer CoO2 was found to have highest EPC.

Graphical abstract: Theoretical prediction of superconductivity in monolayer CoO2

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2019
Accepted
23 Aug 2019
First published
27 Aug 2019

Nanoscale, 2019,11, 17052-17057

Theoretical prediction of superconductivity in monolayer CoO2

D. Nguyen, C. Hsing and C. Wei, Nanoscale, 2019, 11, 17052 DOI: 10.1039/C9NR03954F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements