Issue 10, 2019

Green synthesis of silver nanoparticles using one-pot and microwave-assisted methods and their subsequent embedment on PVDF nanofibre membranes for growth inhibition of mesophilic and thermophilic bacteria

Abstract

Antibacterial silver nanoparticles (AgNPs) were synthesised via an environmentally benign thermally-assisted one-pot and microwave-assisted experimental set-up using apple extract as a reducing agent. The formation of these AgNPs was confirmed by UV-Vis, XRD and EDS while their size distribution was determined by TEM micrographs. The AgNPs were uniformly distributed with diameters of 28.24 ± 1.15 nm and 22.05 ± 1.05 nm for the thermally-assisted one-pot and microwave-assisted reduction methods respectively. The rate of reduction was faster in a microwave-assisted reduction method compared to that of a thermally-assisted one-pot synthesis method. The antibacterial AgNPs were embedded in polyvinylidene fluoride (PVDF) nanofibre membranes and their antibacterial activity against Gram-positive Geobacillus stearothermophilus and Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa and Klebsiella pneumoniae was studied. The antibacterial nanofibres successfully inhibited the growth of these mesophilic and thermophilic bacteria. Therefore, AgNP-embedded PVDF nanofibre membranes showed a high potential for use in water purification systems that are subject to contamination by mesophilic or thermophilic bacteria without compromising the rate of water recovery.

Graphical abstract: Green synthesis of silver nanoparticles using one-pot and microwave-assisted methods and their subsequent embedment on PVDF nanofibre membranes for growth inhibition of mesophilic and thermophilic bacteria

Article information

Article type
Paper
Submitted
07 Dec 2018
Accepted
08 Feb 2019
First published
08 Feb 2019

New J. Chem., 2019,43, 4168-4180

Green synthesis of silver nanoparticles using one-pot and microwave-assisted methods and their subsequent embedment on PVDF nanofibre membranes for growth inhibition of mesophilic and thermophilic bacteria

L. N. Nthunya, S. Derese, L. Gutierrez, A. R. Verliefde, B. B. Mamba, T. G. Barnard and S. D. Mhlanga, New J. Chem., 2019, 43, 4168 DOI: 10.1039/C8NJ06160B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements