Sean D.
Allen†
a,
Sharan
Bobbala†
b,
Nicholas B.
Karabin†
b and
Evan A.
Scott
*abcde
aInterdisciplinary Biological Sciences, Northwestern University, Evanston, USA. E-mail: evan.scott@northwestern.edu
bDepartment of Biomedical Engineering, Northwestern University, Evanston, USA
cChemistry of Life Processes Institute, Northwestern University, Evanston, USA
dSimpson Querrey Institute, Northwestern University, Chicago, USA
eRobert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
First published on 14th November 2018
Self-assembled soft nanocarriers that are capable of simultaneous encapsulation of both lipophilic and water soluble payloads have significantly enhanced controlled delivery applications in biomedicine. These nanoarchitectures, such as liposomes, polymersomes and cubosomes, are primarily composed of either amphiphilic polymers or lipids, with the polymeric variants generally possessing greater stability and control over biodistribution and bioresponsive release. Polymersomes have long demonstrated such advantages over their lipid analogs, liposomes, but only recently have bicontinuous nanospheres emerged as a polymeric cubic phase alternative to lipid cubosomes. In this review, we summarize the current state of the field for bicontinuous nanosphere formulation and characterization and suggest future directions for this nascent delivery platform as it is adopted for biomedical applications.
Nanomedicine strategies frequently demand simultaneous delivery of both hydrophilic and hydrophobic payloads.11,12 For example, subunit vaccine formulations often require synchronous delivery of both hydrophilic protein/peptide antigens and either hydrophilic or hydrophobic adjuvants that could be in the form of lipids, small molecules or nucleic acids.13,14 Solid core self-assembled soft nanocarriers like micelles and filomicelles (cylindrical micelles) are not ideal for these types of applications due to their inability to load hydrophilic cargoes without surface conjugation. Therefore, self-assembled vesicular nanocarriers like liposomes and polymersomes have been of great interest within the field due to their ability to load hydrophilic and hydrophobic compounds in their aqueous core and bilayer membrane, respectively. Furthermore, large conformationally sensitive biologics, like cytokines and growth factors, can be stably loaded within the lumen of vesicular nanocarriers, which both provides protection from opsonization and enzymatic degradation as well as allows transport without modifying the nanocarrier surface chemistry.15,16
Given the expansive applications that can be addressed through dual loading platforms, alternative self-assembled nanocarrier systems have been developed for the delivery of hydrophilic payloads. In addition to liposomes and polymersomes, lipid-based liquid crystalline nanostructures with an internal bicontinuous cubic phase (cubosomes) or reversed hexagonal phase (hexosomes) have been investigated as drug and vaccine delivery vehicles.17Fig. 1 illustrates their internal organization: cubosomes are inverse bicontinuous cubic systems formed by a three-dimensional folding of lipid bilayers to create non-intersecting, continuous aqueous channels;18,19 whereas hexosomes are hexagonal packed arrangements of rod-shaped inverse micelles with closed aqueous channels.20 Glyceryl monooleate- and phytantriol-based liquid crystalline assemblies are most commonly reported to possess such internal structures.21–23 These highly organized nanostructures have demonstrated enhanced loading of hydrophilic, amphiphilic and hydrophobic payloads along with unique sustained release capabilities, suggesting potential use as controlled delivery vehicles and alternatives to liposomes.24–26
While the pioneering work to develop self-assembled cubic phase nanocarriers has primarily relied on lipids, alternative materials have been explored to address key disadvantages of lipid systems. Lipid-based nanocarriers are hindered in their application due to a variety of stability issues. They are susceptible to aggregation in vitro and often require additives to enhance their stability.19 Furthermore, the in vivo susceptibility of these structures to hydrolysis by esterases has been documented and limits control over bioresponsive release.27 To mitigate these stability-related issues, many lipid nanocarriers incorporate polymers for stabilization. Alternatively, some have eschewed these lipid/polymer composite systems and developed fully polymeric platforms for preparing both vesicular and bicontinuous nanocarriers. Self-assembled polymeric nanocarriers are composed of block copolymers (BCPs) that, like lipids, exhibit distinct hydrophobic and hydrophilic regions. Nanocarriers assembled from BCP amphiphiles exhibit significant advantages with respect to their mechanical and chemical stability. This enhanced stability in part stems from the BCP's increased molecular weight, which in turn increases the nanocarrier membrane thickness and alters the mechanisms through which neighbouring amphiphiles interact.9 A more detailed discussion of these mechanisms can be found in a previous review.9 In addition to their enhanced stability, BCPs can be more easily tailored for specific applications, as they can be synthesized from an expansive pool of established monomers, are highly amenable to functionalization, and can display well-defined molecular architectures. To capitalize on these advantages for drug delivery applications, polymeric equivalents to cubosomes and hexosomes have garnered significant interest.
Polymeric bicontinuous nanospheres (BCNs) can be considered polymeric analogues to lipid cubosomes28 and have been recently found to outperform lipid-based systems in terms of stability and ease of manufacturability.29–31 Similar to cubosomes, BCNs have been categorized into gyroid (Ia3d), diamond (Pn3m) and primitive (Im3m) phases depending on their internal cubic organization32 (see Fig. 1 for an illustration of these phases). Self-assembly of BCNs in aqueous solutions often requires polymers with complex polymeric structures that include comb-like, semi-crystalline, dendrimeric, and dendritic BCPs. These complex and often difficult syntheses have posed challenges for the scalable fabrication of BCNs. Furthermore, structural confirmation of the BCN internal organization requires analysis by electron microscopy and Small angle X-ray scattering (SAXS), neither of which are easily accessible techniques. As a result of this prior difficulty in uniform scalable fabrication, polymeric BCNs have not been explored for various medical and non-medical applications in contrast to their lipid-analogues. However, self-assembly of BCNs is highly dependent on the method of formation, concentration of the polymer, manufacturing conditions and solvents employed. Several recent studies have shown that simple amphiphilic linear BCPs could also be utilized to form BCNs.29,33,34
Recent advances in both scalable techniques of nanocarrier self-assembly and in the development of simple amphiphilic linear BCPs that can form BCNs now make these versatile nanocarriers compelling options for controlled delivery applications. In this review, we focus on the different BCP chemistries known to assemble BCNs, advantages and disadvantages of BCN fabrication techniques, current methods of BCN characterization, and future directions essential for employing BCNs as a new platform for nanomedicine.
Drawing from the extensive body of work describing the behaviour of lipid amphiphiles in solution, researchers have utilized the packing parameter or critical packing factor (p) to ascertain why specific BCPs self-assemble into certain morphologies. The packing parameter is defined as p = V/aolc, where V represents the volume of the hydrophilic domain, ao is the surface area of the hydrophilic moiety, and lc the critical length of the hydrophobic segment.36–38 In lipid systems, defined value ranges of p correspond to the formation of spheres, cylinders, lamellae/vesicles, and inverted structures.37 The formation of inverted or cubic structures with lipid amphiphiles typically occurs when p exceeds unity and similar principles apply for amphiphilic BCP systems as well. BCPs designed for the formation of bicontinuous structures often exhibit significant block asymmetry, with a hydrophobic block much larger than its corresponding hydrophilic block, to meet the criteria defined by p (see Fig. 2a for illustrations of p in the case of vesicles and inverted structures). While p has been useful in providing a starting point in the design of BCPs for the formation of bicontinuous structures, the block ratio (f), defined as the ratio of the molecular weight of the hydrophilic block to the molecular weight of the hydrophobic block, is a characteristic that has been more widely applied to define the phase behaviour of polymer systems including their assembly into cubic structures.36 It should be noted that f is alternatively used to represent the hydrophilic mass fraction.
A variety of bicontinuous nanostructures have been prepared from BCPs that vary in both their block chemistries and defining architecture. Here, we will explore the recent BCP systems confirmed to form BCNs organized by polymer architecture (Fig. 2b).
Parry et al. synthesized a novel double-comb diblock copolymer composed of a norborene backbone with oligo(ethylene glycol) and tripeptide branches to assemble a variety of structures, including complex BCNs.42 This BCP system exploited the incorporated peptide sequence rather than the hydrophobic/hydrophilic balance to dictate the primary self-assembled structure and internal organization. Barnhill et al. also employed norborene as the backbone for a library of amphiphilic BCPs.35 While the hydrophobic block was composed of norborene–phenyl, the hydrophilic component was prepared from either norborene–PEG, norborene–ethanolamide, or norborene–glycine. Of the BCPs described, only those with hydrophilic blocks composed of norborene–PEG and norborene–ethanolamide were capable of producing bicontinuous micelles.
Linear diblock copolymers incorporating polystyrene (PS) in conjunction with a range of hydrophilic blocks have been reported to form BCNs. Lin et al. prepared simple linear diblocks composed of PEG and polystyrene (PS) for the assembly of BCNs. The authors synthesized a series of PEG-b-PS BCPs that exhibited f ranging from 0.057 to 0.091.37 By varying the initial concentration of BCP along with f, they could produce a variety of BCNs with surface poration corresponding to the Schoen gyroid surface (Ia3d), the Schwarz diamond surface (Pn3m), and the Schwarz primitive surface (Im3m). Yu et al. used PS-b-poly(acrylic acid) (PS-b-PAA) to produce micron-sized BCNs with nanometer sized pores.44 PS-b-PAA produced both Schoen Gyroid and Schwarz P periodic structures, and interestingly, the PAA block permitted tuning of the nanopores without any additional modification of the material. Due to pH induced changes in PAA swelling and electrostatic repulsion, PS-b-PAA bicontinuous structures exhibited stimuli responsive gating that could be particularly useful for applications in controlled release. Zhang et al. relied on polymer induced self-assembly and reorganization to form nanostructures with highly ordered internal organization, dubbed hexagonally packed hollow hoops and rods, from PS-b-poly(2-dimethylaminoethyl methacrylate) (PS1190-b-PDMAEMA37).45
A variety of linear BCPs rely on less commonly used polymers for the formation of bicontinuous structures. Recently, Allen et al.46 and Bobbala et al.29 reported a simple linear diblock polymer composed of PEG-block-poly(propylene sulfide) (PEG-b-PPS) to form BCNs. This study found that PEG17-b-PPS75 (fPEG = 0.118) diblock copolymers can self-assemble into BCNs with primitive (Im3m) cubic organization. Due to the PPS block, these BCNs showed on-demand payload release in the presence of reactive oxygen species, making it a promising system for controlled release and intracellular delivery. He et al. synthesized amphiphilic poly(ionic liquid) (PIL) diblock copolymers composed of PAA-block-poly(4-vinylbenzyl)-3-butyl imidazoliumbis (trifluoromethylsulfonyl)imide (PAA45-b-PIL23) that are capable of assembling into a unique cuboidal morphology exhibiting an internal bicontinuous structure.47 These cuboidal nanostructures are potentially the result of the conglomeration of intra- and inter-molecular interactions that occur within the PAA45-b-PIL23 BCP system, and their thermosensitivity make them an interesting candidate for drug delivery applications. Kang et al. reported a unique system for the formation of bicontinuous nanostructures that incorporated poly nucleobases.48 These amphiphilic nucleobase-containing BCPs utilize poly(oligo(ethylene glycol)methyl ether methacrylate) as their hydrophilic block with hydrophobic blocks of adenine and thymine, either alone or in a 1
:
1 mixture. Interestingly, the BCP composed of the adenine/thymine mixture (POEGMA70-b-(PAMA0.5-co-PTMA0.5)102), which exhibited a relatively high f of approximately 0.40, formed bicontinuous micelles.
An et al. explored the intersection of BCP architecture and f by preparing bPEG–PS that exhibited three hydrophilic PEG branches.52 By varying the length of the PS block and the molecular weight of the PEG branches, the authors were able to prepare a variety of BCPs that ranged in f from 0.054 to 0.197. Interestingly, bicontinuous cubic microstructures were produced with both molecular weights of PEG, but the f at which said structures formed varied. For bPEG–PS with PEG branches of Mn = 550 g mol−1, bicontinuous cubic structures formed when f ranged from 0.071 to 0.078. This varied from the cubic structures formed from bPEG–PS with Mn = 750 g mol−1 PEG branches, which required an f of approximately 0.05. The bicontinuous structures formed with the lower molecular weight PEG branches exhibited both lm3m and Pn3m symmetries while those formed with higher molecular weight PEG exhibited only Pn3m symmetry.
La et al. further explored the use of bPEG–PS prepared with PEG branches of Mn = 550 g mol−1 for the formation of bicontinuous structures by varying the solvent from aqueous to a mixture of dioxane and dimethylformamide.36 The authors established that hexosomes could be produced when f was less than 0.056. Further exploring this space, Cho et al. investigated how binary blends of bPEG–PS could be used to tailor nanostructure morphology in a nonsynthetic fashion.53 Mixing bPEG–PS42 and bPEG–PS228, both prepared with PEG branches of Mn = 550 g mol−1, permitted the preparation of a variety of nanostructures including bicontinuous cubic structures with both Im3m and Pn3m symmetries and hexosomes with P6mm symmetry as the percentage of incorporated bPEG–PS228 was increased. Jeong and Kim described a bPEG–PS derivative that incorporated photodimerizable indene groups into the hydrophobic block using trimethylsilylindanolylstyrene as a monomer.54 The indene pendant groups can undergo [2π+2π]-cycloaddition through irradiation with UV light, permitting morphologic stability in a variety of solvent conditions. Out of the series of BCPs prepared, those exhibiting PEG branches with Mn = 550 g mol−1 and a f = 0.10 self-assembled into spherical bicontinuous structures displaying Pn3m symmetry. Excitingly, this internal symmetry was maintained even after crosslinking, demonstrating the potential for producing stable structures that can withstand a variety of solvent conditions.
Cho et al., in addition to their work with bPEG–PS, also prepared a variety of bicontinuous structures with bPEG and branched PS (bb-BCPs).38 The branched BCPs, which all displayed three PEG brushes with Mn = 750 g mol−1, could be controlled for f while differing in the number of PS branches, the position of the PS branches, or the length of said branches. This allowed the authors to gauge the impact of BCP architectural characteristics, such as branch number and position, on the self-assembly. Adjusting the aforementioned characteristics allowed the authors to prepare bicontinuous cubic structures, exhibiting Im3m and Pn3m symmetries, as well as hexosomes. Ju et al. prepared a dendritic block terpolymer containing polyisoprene, PS, and poly(tert-butyl methacrylate) that self-assembled into nanospheres with internal bicontinuous organization when formed in tetrahydrofuran (THF) and ethanol.56
Of equal importance for consideration is the solvent system selected during BCN formation. The self-assembled morphology is influenced by the solubility of each block within the employed cosolvent, which impacts the degree of swelling achieved by the respective blocks.33 McKenzie et al. provided a valuable discussion about the importance of solvent selection in their work with PEO-b-PBMA. When highly asymmetric BCPs, exhibiting a large hydrophobic mass fraction, are dissolved in a cosolvent system that favors the solubilization of the hydrophilic block, the increased swelling of the hydrophilic block can suppress the inverse curvature that would typically be imparted by the block asymmetry. As such, selecting a cosolvent system that favors the solubilization of the hydrophobic block may be integral in BCN formation.33
Understanding how to tailor BCP composition and architecture to modulate the pore size of BCNs will be of significant interest moving forward. McKenzie et al. provided some valuable insight concerning the impact of polymer composition on BCN porosity.30 In their work with PEO-b-PODMA, increasing f from 0.11 to 0.25 increased the internal pore size from 10 ± 2 nm to 19 ± 3 nm without significantly changing the pore wall thickness. Interestingly, the increased pore size was determined solely by the hydrophilic block's relative content instead of its absolute molecular weight, presenting a potentially advantageous capability to control the pore size simply by specifying the degree of polymerization of the hydrophilic block. This conclusion was reached by comparing the pore sizes of BCNs formed from BCPs that exhibited the same f but varied in the molecular weight of their hydrophilic block. While these design characteristics may be dependent on the BCP used, they at least provide a starting point for researchers working with previously unexplored materials.
:
non-solvent ratio. The formation techniques used with particular polymers are listed in Table 1 and are illustrated in Fig. 3.
| Polymer | Solvent | Non-solvent | w% non-solvent | mL h−1 | Ref. |
|---|---|---|---|---|---|
| a Poly(ethylene oxide)-block-poly(3-(trimethoxysilyl)propyl methacrylate). b Poly(acrylic acid)-block-poly(methyl acrylate)block-polystyrene. c Poly(norborene-oligo(ethylene glycol))-poly(norborene–lysine–leucine–phenylalanine). d Poly(ethylene oxide)-block-poly(octadecyl methacrylate). e Poly(ethylene oxide)-block-poly(n-butyl methacrylate). f Branched poly(ethylene glycol)-block-polystyrene. g Norbornene block copolymer. h Branched poly(ethylene glycol)-block-branched polystyrene. i Poly(oligo(ethylene glycol)methyl ether methacrylate)-block-poly(nucleobase). j Branched poly(ethylene glycol)-block-trimethylsilylindanolylstyrene. k Polystyrene-block-poly(ethylene glycol). l Poly(ethylene oxide)-block-(poly(octadecyl methacrylate)-co-poly(docosyl methacrylate)). m Poly(acrylic acid)-block-poly(4-vinylbenzyl)-3-butyl imidazoliumbis(trifluoromethylsulfonyl)imide. n Poly(ethylene glycol)-block-poly(propylene sulfide). o Tetrahydrofuran. p Dimethyl sulfoxide. q Dimethylformamide. r Phosphate buffered saline. | |||||
| PEO-b-PTMSPMAa | Methanol | Water | 39 | n.s. | 28 |
| PAA-b-PMA-b-PSb | THFo | Water | 16 to 44 | 15 | 50 |
| PNOEG–PNGLFc | DMSOp | Water | 70 | 5.6 | 42 |
| PEO-b-PODMAd | THFo | Water | 60 | 4 | 34 |
| PEO-b-PBMAe | THFo | Water | 60 | 4 | 33 |
| PEO-b-PODMAd | THFo | Water | 20 | 1.3 | 40 |
| 3xbPEG-b-PSf | Dioxane | Water | 50 | 1 | 32 |
| 3xbPEG-b-PSf | Dioxane | Water | 50 | 1 | 52 |
| Norbornene block copolymerg | DMSOp | Water | 50 | 1 | 35 |
| 3xbPEG–PSf | Dioxane | Water | 50 | 1 | 36 |
| PEO-b-PODMAd | THFo | Water | n.s. | 4 | 30 |
| 3xbPEG–3xbPSh | Dioxane | Water | 50 | 1 | 38 |
| POEGMA-b-poly(nucleobase)i | DMF,q DMSOp | Water | 89 | 1 | 55 |
| PEO-b-POMDAd | THFo | Water | 5 to 63 | 4 | 39 |
| 3xbPEG-b-PSf | Dioxane | Water | 50 | 1 | 53 |
| 3xbPEG-b-P(styrene-ran-TMS-indanolylstyrene)j | THFo | Water | n.s. | 0.5 | 54 |
| PS209-b-PEG45k | Dioxane/DMFq | Water | 50 | 1 | 37 |
| PEG-b-(PODMA-co-PDSMA)l | THFo | Water | 40 | 5.15 | 41 |
| PAA-b-P4VBm | THFo | Water | 62 | 288 | 47 |
| PEG-b-PPSn | THFo | Water and PBSr | 86 | 1800 | 46 |
| PEG-b-PPSn | THFo | Water and PBSr | 86 | 1800 | 29 |
The most recently employed method for BCN formation is flash nanoprecipitation.63,64 This highly scalable protocol involves the rapid impingement and controlled microsecond mixing of the polymer/solvent and non-solvent, followed by dilution of the solvent in a non-solvent reservoir.29,46 Flash nanoprecipitation is currently the only method available for scalable assembly of monodisperse BCNs in quantities necessary for clinical evaluation of new drug formulations. In contrast to traditional nanoprecipitation techniques, flash nanoprecipitation fosters uniform nucleation and growth of precipitating solutes through rapid and thorough mixing of the solvent and non-solvent, generally on the order of 1 millisecond. Flash nanoprecipitation is rapid and scalable but had been previously restricted to the formation of solid-core and micellar nanoparticle formulations. Use of flash nanoprecipitation for forming complex soft nanoarchitectures had been largely unexplored until recently, in work that demonstrated the formation of both vesicular and bicontinuous nanospheres.29,46 The parameters for flash nanoprecipitation are similar to those for traditional nanoprecipitation in terms of polymer concentration and solvent/non-solvent selection,65 but has so far only been demonstrated with the PEG-b-PPS BCP system.29,46 To assemble BCNs from PEG-b-PPS, Allen et al. used a confined impingement jets (CIJ) mixer, which is one of the simplest devices for performing flash nanoprecipitation. CIJ mixers are somewhat limited in that the initial impingement of solvent and non-solvent must occur in equal volumes to ensure proper mixing of the streams. Dilution of the organic solvent occurs immediately after mixing within a non-solvent reservoir. Multiple inlet vortex (MIV) mixers have also been developed, which overcome this limitation of CIJ mixers by permitting multiple streams to be impinged simultaneously for adjustment of the solvent to non-solvent ratio.66 However, to date MIV mixers have not been explored for use in the formation of BCNs.
Choice of solvent and non-solvent requires consideration of the solubility of the different blocks of the copolymer. As BCN formation is rare and likely exists in a narrow phase of metastable morphologies, small changes to the packing parameter of the copolymer can result in shifts in the aggregate morphology. In work by McKenzie et al.,33 shifting the solvent used in nanoprecipitation from THF to dioxane was sufficient to alter the aggregate morphology from BCNs to vesicles, likely due to the distinct solubility parameters of the different blocks of the copolymer and the two organic solvents. Similarly, Kang et al. found that their PEG-b-poly(nucleobase) copolymers formed BCNs when using dimethyl sulfoxide (DMSO) as the solvent, but formed other morphologies when N,N′-dimethylformamide (DMF) was used.55 This matches well with work by Barnhill et al. demonstrating that polynorbornene amphiphilic diblock copolymers were able to form bicontinuous structures in DMSO, while the same polymer formed different aggregate morphologies in acetonitrile and DMF.35 Further evidence of this trend was provided by La et al. with their work on branched PEG-b-PS. When either dioxane or THF were used as the single organic solvent, a bPEG5503-PS177 polymer formed vesicles. However, when a dioxane/DMF mixture was used, BCNs were formed using the same polymer.36 The hydration of the hydrophilic portion of the block copolymer may play a role in aggregate properties as well. Work by Bobbala et al. demonstrated that using phosphate buffered saline as the non-solvent resulted in increased polydispersity of the BCN formulation, compared to pure water.29 It is clear that a significant amount of work is needed to explore the potential solvent/non-solvent space with regards to BCN formation by nanoprecipitation.
The rate of non-solvent addition and final ratio of solvent to non-solvent prior to solvent removal via dialysis are both variables that have been empirically explored, as summarized in Table 1. Non-solvent addition is typically slow, ranging from 0.5 to 15 mL h−1, although He et al. performed nanoprecipitation with the rapid (288 mL h−1) addition of water,47 and the Bobbala et al. flash nanoprecipitation protocol used even more rapid (∼1800 mL h−1) addition of aqueous solution.29,46 It is notable that He et al. found that formation of BCNs with their polymer was incompatible with faster and slower rates of non-solvent addition, while Bobbala et al. found that their polymer formed BCNs by both flash nanoprecipitation and a slower standard nanoprecipitation process.29 Thus, while some polymers may only form BCNs when kinetically trapped by rapid introduction of the non-solvent, others may form BCNs under both rapid and slow non-solvent addition conditions.
In most reported nanoprecipitation methods of BCN formation, the ratio of solvent to non-solvent typically remained around 1
:
1. Hales et al. explored a range from 16 to 44 wt% water50 and McKenzie et al. explored a range from 5 to 63 wt% water.39 These two examples are notable due to their disparate conclusions. Hales et al. found that changing the ratio of THF
:
water resulted in the formation of BCNs with different internal structures. Importantly, they did not remove the THF by dialysis after particle formation prior to analysis via TEM. In contrast, McKenzie et al. found with their polymer system that the THF
:
water ratio did not result in BCN formation until the THF had been removed by dialysis, and that the addition of water during the nanoprecipitation process did not result in the production of BCNs. While the explanation of the differences in results undoubtedly lies in the differences of the block copolymers used in the two studies, this example illustrates the complex interplay of variables in the formation of BCNs.
A new area of BCN formation utilizes polymerization techniques that can occur in solutions that contain a non-solvent for one of the blocks of the copolymer. Reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene in ethanol using a PDMAEMA macroinitiatior resulted in the formation of bicontinuous nanostructures, as assessed via electron microscopy of crude nanoparticles in diluted ethanol, directly from the polymerization reaction.45 A similar reaction using a PEG macroinitiator for RAFT polymerization in an 80/20 ethanol/water solution has also been documented to form a variety of complex nanostructures, including BCNs.68
Solvent evaporation has been used to form BCNs and other complex nanoarchitectures using PS-b-poly(4-vinylpyridine) (PS-b-P4VP) polymer. The copolymer was dissolved in toluene, which was then emulsified in an aqueous SDS solution. The toluene was allowed to gradually evaporate, resulting in nano- and microparticles. This process, which involves a water-immiscible solvent (toluene), emulsification, and gradual evaporation is notably different from the far more common nanoprecipitation methods presented above.69
![]() | ||
| Fig. 4 Examples of different characterization techniques for BCNs. (a) DLS data of nanoparticle size distribution. (b) CryoTEM micrograph of polymeric BCNs, scale bar = 100 nm. (c) SEM micrograph of polymeric bicontinuous microparticles, scale bar = 1 μm. (d) SAXS scattering of polymeric BCNs shown in (b), with labelled Bragg's peaks demonstrating a cubic internal organization. (a), (b) and (d) Reproduced with permission from ref. 29. Copyright 2018, The Royal Society of Chemistry and (c) Reproduced with permission from ref. 32. Copyright 2014, Nature publishing group. | ||
Nanoparticle tracking analysis (NTA) is used to measure particle size and concentration in liquid suspensions based on the properties of both light scattering and Brownian motion. During an NTA measurement, individual nanoparticles are tracked optically to assess their diffusion coefficients and resulting size. This provides NTA with several advantages over DLS, including the abilities to distinguish multiple nanoparticle populations in a single solution and determine nanoparticle concentration.46,71 For the first time, Allen & Bobbala et al., utilized NTA to measure and compare particle concentrations for PEG-b-PPS-based BCNs and polymersomes per each microgram of polymer utilized.72 As expected, at the same polymer concentration, the high density internal organization of BCNs resulted in significantly less nanoparticles per volume of solution than similarly sized vesicles possessing large aqueous lumens.
sin
θ/λ, where θ and λ are the scattering angle and X-ray wavelength, respectively. The internal geometries (Im3m, Pn3m and Ia3d) of bicontinuous cubic structures are assigned using characteristic Bragg peak spacing ratios, which is reviewed elsewhere18 (Fig. 4d). The interlayer spacings, d, for BCNs is calculated using d = 2π/q and the mean lattice parameter, a, can be calculated from d.22
SAXS has been used frequently to characterize internal geometries of polymeric BCNs.29,38,39 SAXS can also allow calculation of the radii of aqueous channels within BCNs.70 In addition, time- and temperature-resolved SAXS has been employed to understand the evolution of the BCNs during formation. As one example, McKenzie et al., utilized temperature resolved SAXS to understand the evolution of complex PEO-b-PODMA BCNs in aqueous solution.39 In this study, temperature resolved SAXS performed at 5–50 °C showed characteristic high intensity peaks corresponding to Im3m geometry at higher temperatures (>20 °C) and broad diffused peaks at lower temperatures (10 °C) that is attributed to the crystallinity of PODMA side chains. However, future studies involving usage of other variables like salt, polymer concentration and type of solvent may help in further understanding the evolution of BCN structure during self-assembly.
The release behaviour of hydrophobic and hydrophilic molecular payloads from BCNs has been reported by several groups. Monaghan et al., modulated the release of the common hydrophobic non-steroidal anti-inflammatory drug ibuprofen using BCNs made up of semi-crystalline BCP, (PEO-b-[PODMA-co-PDSMA]).41 This report verified the relationship between the crystallinity of hydrophobic block and the rate of payload release, where higher crystallinity favoured lower release rates of ibuprofen from BCNs. For the first time, Bobbala et al. reported release kinetics of both hydrophobic and hydrophilic molecules from polymeric BCNs.29 In this study, the controlled release of a wide range of hydrophobic and hydrophilic molecules from PEG-b-PPS BCNs was assessed for up to 2 weeks, finding the release of hydrophilic molecules to be relatively faster than that of the hydrophobic counterparts. Furthermore, the release rate was slower for high molecular weight compared to lower molecular weight hydrophilic molecules. These studies provide early demonstrations of the potential of BCNs as delivery vehicles for low and high molecular weight therapeutics, biologics, vaccines and hydrophobic drugs. However, the loading and release of low molecular weight hydrophilic drugs remains challenging, and either controlling the internal pore size of aqueous channels or employing electrostatic retention within the aqueous channels may present interesting strategies to address this issue.
![]() | ||
| Fig. 5 In vitro and in vivo application of BCNs. (a) In vitro delivery of adjuvant and model antigen to bone marrow derived dendritic cells and flow cytometric analysis of cell activation and antigen display. Cell (b) and organ (c) level distribution comparison between polymersomes (PSs) and BCNs 4 or 24 hours after intravenous administration. (a) Reproduced with permission from ref. 29. Copyright 2018, The Royal Society of Chemistry and (b and c) reproduced with permission from ref. 72. Copyright 2018, American Chemical Society. | ||
Next steps for BCN development as a nanocarrier platform will likely involve the loading and delivery of therapeutic payloads in vivo. As BCNs are capable of the simultaneous loading of hydrophilic and hydrophobic compounds, they will be particularly useful for applications where two or more compounds need to arrive at the same location for specific biological stimulation. In addition to the aforementioned applications in vaccine formulations, BCNs may serve as advantageous nanocarriers for theranostic strategies by allowing controlled dual delivery of therapeutic and diagnostic agents. Longer term goals for the advancement of BCNs may involve the engineering of BCN diameter, surface functionalization, and pore size to address diverse in vivo challenges. BCNs are relatively large nanoparticles currently, and a smaller diameter could alter their biodistribution significantly. Pore size alterations, including stimuli-responsive changes to pore diameter, could allow for more nuanced release of hydrophilic payloads in vivo.
Surface functionalization could impart differential cellular uptake and clearance rates. The interaction of nanoparticles with biological components can procure several adsorbates such as a ‘protein corona’, lipids, polysaccharides, natural organic matter and adsorbed ions, each of which affects the cellular uptake and biodistribution of nanoparticles.81 Designing BCNs with PEG on their surface could prevent protein corona formation and enhance systemic circulation time, however, the presence of PEG can reduce the uptake of nanoparticles by intended cells.82,83 Recent studies also suggest that PEG density on nanoparticle surfaces can play an important part in dictating the protein corona formation, cellular uptake and circulation times.84,85 Furthermore, surface functionalization with antifouling polymers and cell-specific peptides and antibodies can improve nanoparticle targeting and will likely enhance the specificity of cellular uptake by BCNs as well.86 Modulation of BCN surface charge will also be critical for cellular interactions and toxicity. In general, cationic nanoparticles are efficiently taken up by cells when compared to anionic and neutral nanoparticles, however, a positive surface charge can increase both toxicity and non-specific cellular interactions.87,88 Further, anionic and cationic nanoparticles have been reported to exhibit faster clearance rates as compared to their neutral and zwitterionic counterparts.89 Thus, development of BCNs with neutral or zwitterionic surfaces could enhance circulation times and safety while surface conjugated targeting moieties may improve the cellular specificity of delivered therapeutics.
The mechanical properties of nanoparticles play a key role during cellular internalization and circulation in vivo.90,91 For example, several studies found that soft nanoparticles have lower cellular internalization and longer circulation times as compared to hard nanoparticles, which was attributed to the amenability of soft nanoparticles to deformation during phagocytosis.90,92 There is no standard relationship established between the degree of nanoparticle stiffness and cellular internalization in the literature, as results vary extensively between different BCP systems. However, a study reported by Banquy et al. suggests that nanoparticles with an intermediate elastic modulus (Young's moduli ∼35 and 136 kPa) have greater cellular uptake than lower (∼18 kPa) or higher stiffness nanoparticles (∼211 kPa).93 The highly organized cubic internal structure of BCNs suggests that they may have a higher stiffness compared to vesicular structures, however, a detailed analysis of the elastic modulus of BCNs has not been performed. An interesting future experiment would be to modulate BCN elastic modulus by controlling pore size and composition, possibly providing an additional means of specifying BCN biodistribution and cellular interactions.
Further development of polymeric BCNs is also dependent on the advancement of scalable manufacturing techniques. The recently reported flash nanoprecipitation method may have potential to manufacture polymeric BCNs on a commercial scale. However, this method has only been demonstrated for BCNs assembled from PEG-b-PPS copolymers. Additional work will be necessary to validate and optimize this methodology for other BCP systems.
Characterization tools like DLS, cryo-TEM and SAXS have shown great promise for confirming and analysing BCN monodispersity and internal structure. Additionally, utilization of techniques like energy-dispersive X-ray spectroscopy, atomic force microscopy and nitrogen adsorption–desorption isotherm analysis present new options to better understand BCN assembly and suitability for different applications.
Polymeric BCNs have been applied in vivo in only a single instance and have only had limited testing in vitro. However, there is little that limits the in vivo use of polymeric BCNs, as they can be made of non-toxic and bioresponsive polymeric materials, making them as safe and versatile as lipid cubosomes, liposomes and host of other nanoparticles currently employed for biomedical applications.
Footnote |
| † All authors contributed equally to this work. |
| This journal is © The Royal Society of Chemistry 2019 |