Issue 42, 2019

A single-ion single-electron cerrous magnet

Abstract

Herein, we present monometallic Ln(III) complexes [L3Ln(NO3)3] [where Ln = Ce (1) and La (2)] assembled from a simple reaction of the respective lanthanide nitrate hydrate and a bulky phosphonic diamide tBuPO(NHiPr)2 ligand (L), where complex 1 behaves as a single-ion single-electron magnet under a small applied magnetic field. The Ce(III) ion occupies a nine-coordinate distorted muffin-like coordination environment. The combination of direct and Raman process dominates the relaxation dynamics in 1 under the applied dc field. The low-temperature measurements performed with oriented crystals on a micro-SQUID setup exhibits strong tunnelling at zero-field, consistent with the theoretical results where strong mixing of the ground state with higher excited mJ levels is detected and also throws additional insights on the relaxation dynamics of 1. Ab initio calculations have been performed to understand the origin of anisotropy and models have been proposed for future directions.

Graphical abstract: A single-ion single-electron cerrous magnet

Supplementary files

Article information

Article type
Paper
Submitted
25 Jul 2019
Accepted
21 Aug 2019
First published
22 Aug 2019

Dalton Trans., 2019,48, 15928-15935

A single-ion single-electron cerrous magnet

S. K. Gupta, S. Shanmugan, T. Rajeshkumar, A. Borah, M. Damjanović, M. Schulze, W. Wernsdorfer, G. Rajaraman and R. Murugavel, Dalton Trans., 2019, 48, 15928 DOI: 10.1039/C9DT03052B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements