Issue 30, 2019

gem-Dibromovinyl boron dipyrrins: synthesis, spectral properties and crystal structures

Abstract

A family of new asymmetric and symmetric 1,3,7,9-tetramethyl-4,4-bora difluoro-diaza-s-indacene (BODIPY) derivatives, bearing gem-dibromovinyl substituents, was synthesized by the Corey–Fuchs olefination method. One or two gem-dibromovinyl moieties were attached at either the p-position of 5-phenyl, or the β-position of the pyrrole ring, directly or, through phenyl spacers. The assigned structures were supported by MS, NMR (1H, 13C, 19F), X-ray diffraction analysis and for some compounds 2D HSQC and 11B NMR as well as optical spectroscopy. Their absorption and fluorescence properties and solvatochromism in different solvents were investigated. The highest absorption and emission maxima were obtained for compounds having two gem-dibromovinyl groups attached directly or through the phenyl spacer. The best correlation (R-coefficient) between the solvent and spectral properties of the BODIPYs were obtained using the refractive index of the solvent. Although these compounds are structurally quite similar, their solid states show remarkable differences in the crystal system, clearly revealing two distinct patterns of gem-dibromovinyl orientation and torsion angles of the 5-phenyl ring and the indacene plane. Hirshfeld surface analysis data were used to visualize various intermolecular interactions.

Graphical abstract: gem-Dibromovinyl boron dipyrrins: synthesis, spectral properties and crystal structures

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2019
Accepted
02 Jul 2019
First published
02 Jul 2019

Dalton Trans., 2019,48, 11492-11507

gem-Dibromovinyl boron dipyrrins: synthesis, spectral properties and crystal structures

H. Ali, B. Guérin and J. E. van Lier, Dalton Trans., 2019, 48, 11492 DOI: 10.1039/C9DT02309G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements