Electronic transport properties of MoS2 nanoribbons embedded in butadiene solvent
Abstract
Transition metal dichalcogenides (TMDCs) are promising materials for applications in nanoelectronics and correlated fields, where their metallic edge states play a fundamental role in the electronic transport. In this work, we investigate the transport properties of MoS2 zigzag nanoribbons under a butadiene (C4H6) atmosphere, as this compound has been used to obtain MoS2 flakes by exfoliation. We use density functional theory combined with non-equilibrium Green's function techniques, in a methodology contemplating disorder and different coverages. Our results indicate a strong modulation of the TMDC electronic transport properties driven by butadiene molecules anchored at their edges, producing the suppression of currents due to a backscattering process. Our results indicate a high sensitivity of the TMDC edge states. Thus, the mechanisms used to reduce the dimensionality of MoS2 considerably modify its transport properties.