Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In this manuscript we have combined a CSD (Cambridge Structural Database) analysis with theoretical calculations (RI-MP2/def2-TZVP level of theory) to study the importance of polarizability in chalcogen bonding interactions. It is well known that chalcogen bonds are stronger for less electronegative chalcogen atoms, i.e., S < Se < Te, and in the presence of electron-withdrawing substituents at the chalcogen. Herein, we report experimental and theoretical evidence (RI-MP2/def2-TZVP) that the chalcogen bond acceptor (Lewis base) has a preference in some cases for the σ-hole that is opposite to the more polarizable group instead of the more electron withdrawing one, as confirmed by Natural Bond Orbital (NBO) and Bader's theory of “atoms-in-molecules” computational tools.

Graphical abstract: Unexpected chalcogen bonds in tetravalent sulfur compounds

Page: ^ Top