Issue 5, 2019

Water absorption by deep eutectic solvents

Abstract

Deep eutectic solvents (DESs) are one type of green solvents. Most of the DESs could absorb water from air. However, even a trace amount of water can affect the chemical structure and physical properties of DESs. To date, no study has been reported on the hygroscopicity of DESs. Consequently, in this study, a comprehensive investigation was performed on the capacity, kinetics, mechanism, and furthermore the dynamic process (by PCMW2D-COS IR spectra) of atmospheric water absorption from air by DESs. The results show that most DESs are highly hygroscopic. Surface absorption enhances the overall water absorption capacity by DESs in spite of decreasing the initial water absorption rate. In the beginning, the water absorption increases with an increase in the number of hydrophilic groups in DESs due to the retained DES nanostructure during this period. Therefore, DESs with more hydrophilic groups (ChCl:glucose than ChCl:xylitol) possess a higher water absorption initial rate. However, when the water absorption capacity is high, the hindrance from the H-bond strength from inner DESs needs to be overcome for the absorption of more water. In this case, DESs with stronger H-bonds (ChCl:glucose than ChCl:xylitol) have a lower steady-state water absorption capacity and an easier equilibrium.

Graphical abstract: Water absorption by deep eutectic solvents

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2018
Accepted
04 Jan 2019
First published
04 Jan 2019

Phys. Chem. Chem. Phys., 2019,21, 2601-2610

Water absorption by deep eutectic solvents

Y. Chen, D. Yu, W. Chen, L. Fu and T. Mu, Phys. Chem. Chem. Phys., 2019, 21, 2601 DOI: 10.1039/C8CP07383J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements