Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The photodissociation dynamics and stereodynamics of ethyl iodide from the origin of the second absorption B-band have been investigated combining pulsed slicFe imaging with resonance enhanced multiphoton ionization (REMPI) detection of all fragments, I(2P3/2), I*(2P1/2) and C2H5. The I*(2P1/2) atom action spectrum recorded as a function of the excitation wavelength permits one to identify and select the 000 origin of this band at 201.19 nm (49 704 cm−1). Translational energy distributions and angular distributions for all fragments and semiclassical Dixon's bipolar moments for the C2H5 fragment are presented and discussed along with high-level ab initio calculations of potential energy curves as a function of the C–I distance. A predissociative mechanism governs the dynamics where in a first step a bound Rydberg state corresponding to the 5pπI → 6sI transition is populated by the 201.19 nm-photon absorption. A curve crossing with a repulsive state located within the Franck–Condon geometry leads to direct dissociation into the major channel C2H5 + I*(2P1/2). A small amount of I(2P3/2) atoms is nevertheless observed and presumably attributed to a second curve crossing with a repulsive state from the A-band.

Graphical abstract: Dynamics of the photodissociation of ethyl iodide from the origin of the B band. A slice imaging study

Page: ^ Top