Issue 18, 2019

On the capability of metal–halogen groups to participate in halogen bonds

Abstract

A number of halogen (X) atoms were covalently attached to a metal (M) and the ability of the X atom to act as electron acceptor in a halogen bond to nucleophile NCH was assessed. Both Cl and Br were considered as halogen atom, with NH3 and CO as other ligands attached to the metal. Metals tested were Ti, Mn, and Zn in various combinations of oxidation state, coordination, and overall charge. In the majority of cases, the strong electron-releasing power of the metal imbues the halogen atom with a high negative partial charge and minimizes the development of a σ-hole. As such, the M atom is generally a stronger attractor for the incoming nucleophile than is the halogen. Nonetheless, there are cases where a halogen bond can form such as Ti(CO)4Br+, TiCl3+, and MnCl4+, each with a different coordination. A requisite of halogen bond formation is generally an overall positive charge, although neutral species can engage in such bonds, albeit much weaker.

Graphical abstract: On the capability of metal–halogen groups to participate in halogen bonds

Article information

Article type
Paper
Submitted
03 Apr 2019
Accepted
17 Apr 2019
First published
17 Apr 2019

CrystEngComm, 2019,21, 2875-2883

On the capability of metal–halogen groups to participate in halogen bonds

S. Scheiner, CrystEngComm, 2019, 21, 2875 DOI: 10.1039/C9CE00496C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements