Issue 5, 2019

POSS-based supramolecular amphiphilic zwitterionic complexes for drug delivery

Abstract

Zwitterionic complexes in aqueous solutions have been extensively explored as the most promising candidate in drug delivery systems for targeted cancer chemotherapy. A POSS-based supramolecular AD-POSS-(sulfobetaine)7/CD-PLLA zwitterionic complex has been fabricated via a combination of efficient click chemistry and host–guest interaction. The well-defined POSS-based zwitterionic polymer could self-assemble into spherical nanoparticles that encapsulated a model cancer drug (DOX) and exhibited drug release in a controlled manner in a faintly acidic environment. On account of the hydrophilic block with cationic and anionic groups in the microscopic range that can form a hydration layer via electrostatic interactions, these drug-loaded nanoparticles exhibited excellent stability in a tumor intracellular microenvironment or under other pH conditions as revealed by dynamic light scattering (DLS) and zeta potential measurements. In vitro experiments demonstrated that these POSS-based nanoparticles had high resistance to non-specific protein absorption and low cytotoxicity against normal cells. Moreover, these DOX-loaded aggregates could be accumulated and effectively internalized by HeLa and MCF-7 tumor cells, exhibiting effective cellular proliferation inhibition via the release of anticancer agents. Therefore, these POSS-based supramolecular amphiphilic zwitterionic complexes, relying on the simple supramolecular interaction and efficient click reaction, could further emerge as a potential universal anticancer drug nanocarrier system for multifunctional cancer chemotherapy.

Graphical abstract: POSS-based supramolecular amphiphilic zwitterionic complexes for drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2019
Accepted
14 Feb 2019
First published
05 Mar 2019

Biomater. Sci., 2019,7, 1984-1994

POSS-based supramolecular amphiphilic zwitterionic complexes for drug delivery

L. Fan, X. Wang, Q. Cao, Y. Yang and D. Wu, Biomater. Sci., 2019, 7, 1984 DOI: 10.1039/C9BM00125E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements