Milagros
Montemurro
ab,
Andreas
Schwaighofer
a,
Anatol
Schmidt
c,
María J.
Culzoni
b,
Helmut K.
Mayer
c and
Bernhard
Lendl
*a
aInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria. E-mail: bernhard.lendl@tuwien.ac.at
bLaboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
cDepartment of Food Science and Technology, Food Chemistry Laboratory, BOKU – University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
First published on 12th August 2019
Analysis of bovine milk proteins is crucial in many food and non-food industrial applications, nevertheless labour-intensive wet-chemical, low-throughput methods are still routinely used. In this work, external cavity-quantum cascade laser (EC-QCL) mid-infrared spectroscopy is employed as a rapid method for protein analysis of commercial bovine milk. Combined analysis of the amide I and II bands enabled quantitation of individual proteins (casein, β-lactoglobulin, α-lactalbumin) and total protein content. IR spectra of spiked and diluted milk samples were employed for calibration of the target analytes in the presence of a complex matrix by partial least squares (PLS) regression modelling. A sample set of different milk types (pasteurized; differently processed extended shelf life, ESL; ultra-high temperature, UHT) was analysed, and results agreed well with reference methods. Quantitation of temperature sensitive proteins enables detailed distinction between milk types experiencing different heat loads during processing, and discrimination between diverse bovine milk types is successfully demonstrated.
Milk and milk product consumption is recommended by most nutritional guidelines, since these food items contain a combination of essential nutrients.3 Commercially available milk is subject to different thermal processing steps that influence parameters such as storage life and milk quality, i.e. nutritional composition and organoleptic characteristics. Currently, commercially available milk types comprise pasteurized milk, extended shelf life (ESL) milk and ultra-high temperature milk. Pasteurized milk is subjected to the mildest thermal treatment (commonly 72 °C for 15 s) and can be stored at 2–8 °C for up to 10 days.4,5 ESL milk has acquired a substantial market share in recent years, because it allows longer storage time than pasteurized milk (up to 24 days under cooled conditions), while upholding flavour and nutritive properties of fresh foods.6 The processing conditions for manufacturing ESL milk can be classified into non-thermal and thermal treatments. Non-thermal milk treatment belongs to the rather soft processing methods. Examples are bactofugation and microfiltration. Processing of ESL milk involves more severe thermal conditions than pasteurization but less intensive than ultra-high temperature (UHT) manufacturing. Two heating processes are used to produce high temperature short time (HTST) milk, where milk is subjected to approx. 125 °C for 2–3 s. In direct heating processes, the milk is heated at a fast rate by direct contact to dry steam, while indirect heating involves the use of heat exchangers. The slower heating and cooling rates of the indirect method induce more chemical changes in the milk.5,7 Finally, UHT milk is processed by thermal treatment at a minimum temperature of 135 °C for at least 1 s that introduces a characteristic “cooked” taste, and is then storable at ambient conditions for 6 months.7
Exposure to intensive heat loads influences the quality of the final milk product and leads to sensorial (e.g. cooked flavour), nutritional (e.g., protein denaturation, vitamin loss) and chemical (unfolding of proteins, Maillard reaction products) modifications. Analysis of heat load indicators that are related to heat treatment (degradation or formation) enables a direct and quantitative assessment of the heat load impact without knowledge of the preceding thermal history.8,9 Bovine milk comprises multiple heat sensitive components that can be utilized for this kind of evaluation, such as the whey proteins α-LA and β-LG. Denaturation begins at approx. 60 °C for β-LG and at approx. 75 °C for α-LA, consequently the remaining concentration of undenatured fractions of these proteins in the final milk product provides information about the experienced heat load and enables discrimination between different milk types.10 The International Dairy Federation (IDF) suggests a minimum β-LG content of 2.6 g L−1 for pasteurized milk, 2.0 g L−1 for high-pasteurized (ESL) milk, and 0.05 g L−1 for UHT milk.11 For liquid ESL milk, these limits are not obligatory, in contrast to pasteurized/UHT milk. In Austria, however, since July 2018 a minimum β-LG content of 1.8 g L−1 has been introduced for ESL milk in order to minimize the actual heat load of this upcoming milk type.
Nowadays, the traditional Kjeldahl method for determination of organic nitrogen in food and beverages continues to be the employed standard analytical technique for quantification of total protein content in milk, even though it is a fairly labour-intensive wet-chemical approach with low throughput. For quantitation of individual milk proteins including Cas, α-LA and β-LG, diverse techniques based on chromatographic11–13 and electrophoretic13 methods can be employed, all of them involving time-consuming, wet-chemical sample preparation steps. Mid-infrared (IR) spectroscopy has been applied for rapid and non-destructive analysis of quality and composition of dairy products due to its high-throughput capacity, simplicity and low cost.14–16 Furthermore, an mid-IR spectroscopic approach was approved by the Association of Official Analytical Chemists (AOAC International) for the analysis of liquid milk, resulting in the development of several commercially available FTIR milk analysers for quantification of total protein and casein content, among other parameters.17 Apart from mid-IR spectroscopy, also near-IR spectroscopy was applied for analysis of the total protein content of milk.18–20
Mid-IR spectroscopy is a well-established analytical technique that detects the fundamental vibrations of covalent bonds in molecules in a label free manner. For quantitative analysis of total protein content in milk, typically the amide II (1500–1600 cm−1) band is evaluated at path lengths of approx. 50 μm for FTIR transmission measurements, most commonly combined with multivariate calibration techniques.14,15,21,22 Qualitative discrimination between proteins is preferably performed by evaluation of the amide I (1600–1700 cm−1) band, that is particularly sensitive to the protein secondary structure. However, it was shown that additional and more in-depth information about protein secondary structure can be gained by collective analysis of both spectral regions, particularly with chemometric analysis.23,24 Application of FTIR transmission spectroscopy in aqueous solution in the 1600–1700 cm−1 spectral region is cumbersome due to the strong absorbance of H2O centered at 1645 cm−1 and the low emission powers of thermal light sources in conventional FTIR spectrometers. For this reason, path lengths of typically <10 μm are employed in order to prevent total IR absorption in this region, which impairs sensitivity levels necessary for the analysis of biologically relevant concentrations, and considerably reduces the robustness of the application. Consequently, custom-built setups for IR spectroscopy based on quantum cascade lasers were developed to overcome the disadvantages of FTIR instruments, and already diverse applications in mid-IR spectroscopy were reported.25 In IR transmission spectroscopy of proteins, the transmission paths could be considerably increased by using an external cavity-quantum cascade laser (EC-QCL) light source that provides significantly higher emission powers.26 Laser-based IR transmission measurements were successfully performed for examination of the protein secondary structure by evaluation of the amide I band.27,28 Further, the viability of protein discrimination and quantitation in commercial bovine milk samples was successfully demonstrated.29,30 Most recently, a new and improved EC-QCL based IR transmission setup was introduced for analysis of the protein amid I and amide II regions, allowing more sensitive quantitative and more detailed qualitative analysis of proteins.31
One of the challenges faced in the analysis of complex samples is the quantitation of an individual analyte in a multicomponent system. Partial least-square (PLS) regression is a well-known algorithm applied to first-order multivariate calibration, which allows rapid determination of multiple components usually without the need for prior separation.32 When applying PLS, calibration can be performed considering only the concentration of the analytes of interest. However, all the expected components of the matrix must be present in the calibration step, even though their concentration can be ignored. Furthermore, if the sample contains non-calibrated interferences, it can be identified as an outlier because of the unusually large spectral residuals, a property known as first-order advantage.33 PLS has been widely applied to the analysis of complex systems, such as for fluorescence data showing inner filter effects,34 due to the flexible structure of the algorithm that allows considering these effects by including additional latent variables in the model.35
In this work, the fast and direct quantitation of individual proteins (i.e. Cas, α-LA and β-LG) as well as total bovine milk protein content is presented by employing a latest generation EC-QCL setup for analysis of a sample set comprising different milk types. The obtained results were validated by comparison with the standard reference methods. It was illustrated that the obtained concentration values can be used for discrimination of the most prevalent commercial milk types.
![]() | ||
Fig. 1 Schematic of the EC-QCL based IR transmission setup. A path length of 31 μm was employed for measurements of milk. |
The measured signal was processed by a lock-in amplifier (Stanford Research Systems, CA, USA) and digitized by a NI DAQ 9239 24-bit ADC (National Instruments Corp., Austin, USA). Each single beam spectrum consisting of 6000 data points was recorded during the tuning time for one scan of approx. 250 ms. A total of 100 scans were recorded for background and sample single beam spectra at a total acquisition time of 53 s. All measurements were carried out using a custom-built, temperature-controlled flow cell equipped with two MIR transparent CaF2 windows and 31 μm-thick spacer, at 20 °C. For spectra acquisition, 1 mL of the sample liquid were applied to the transmission cell either by a suitable syringe or by an automated flow injection sampling system.26 Reference spectra were recorded after measurement of 10 samples. Prior to acquisition of the reference spectrum, the transmission cell was cleaned with ethanol and 1% sodium dodecyl sulfate (SDS). The laser was controlled by Daylight Solution driver software; data acquisition and temperature control was performed using a custom-made LabView-based GUI (National Instruments Corp., Austin, USA).
![]() | ||
Fig. 2 (A) QCL-IR spectra of 10 mg mL−1 Cas, β-LG and α-LA. (B) QCL-IR spectra of milk at dilution levels (75%, 50%, 25% milk) with high (3.8 mg mL−1) and low (0.2 mg mL−1) β-LG levels. |
In addition, a validation set was prepared applying the same strategy used for the calibration samples. Here, 18 validation samples, 9 for each type of milk (UHT and ESL HTST), were prepared by spiking the samples with ternary mixtures of the proteins in three concentration levels, in triplicate. Different aliquots of milk were added in each replicate, differing from those used in the calibration step.
RP-HPLC was performed on a Waters chromatography system using a model 600E multisolvent delivery system, a Rheodyne 7725i injector, guard column (Sentry Guard, Symmetry™ C18, 3.5 μm, 2.1 × 10 mm) and a Symmetry™ 300 C18 column (3.5 μm, 2.1 × 150 mm) (Waters Corporation, Milford, MA, USA). Column eluates were monitored at 205 nm using a Waters 2489 UV/Vis detector interfaced with a PC running Waters Millennium chromatography software for data acquisition and management.
Gradient separation was carried out within 18 min, followed by column equilibration leading to sample injection intervals of 35 min.11 Solvent A consisted of 0.1% trifluoroacetic acid (TFA) in ultrapure water, solvent B of 0.1% TFA in acetonitrile. Solvents for HPLC analysis were freshly prepared weekly and vacuum filtered (Whatman™, ME24ST Membrane Filters White, 0.2 μm, diameter 47 mm) before use. Gradient elution was carried out by increasing solvent B linearly from 36% to 50% over 14 min, followed by increasing to 100% B within 0.5 min, and finally holding at 100% B for 3.5 min. Separation was performed at a column temperature of 40 °C with a flow rate of 0.35 mL min−1, and the injection volume was set to 10 μL.11
α-LA | β-LG | Cas | Total protein | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Full range | Low level range | Full range | Low level range | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LV – latent variable, 2nd Der. – 2nd derivative, MC – mean centering, RMSECV – root mean squared error of cross validation, LOD – limit of detection, LOQ – limit of quantitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concentration range (mg mL−1) | 0.10–1.75 | 0.10–0.75 | 0.20–4.40 | 0.20–1.80 | 20–31 | 29–36 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Spectral region (cm−1) | 1696–1624/1576–1504 | 1672–1504 | 1648–1600 | 1638–1614 | 1720–1495 | 1566–1518 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pre-processing | 2nd Der./MC | 2nd Der./MC | MC | MC | MC | MC | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LVs | 9 | 7 | 9 | 6 | 9 | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RMSECV (mg mL−1) | 0.14 | 0.19 | 0.14 | 0.09 | 0.32 | 0.34 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Exp. var. (%) | 99.967 | 99.847 | 99.989 | 99.936 | 99.998 | 99.940 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LODmin | 0.077 | 0.052 | 0.071 | 0.11 | 0.28 | 0.22 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LODmax | 0.17 | 0.13 | 0.21 | 0.30 | 0.52 | 0.35 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LOQmin | 0.23 | 0.16 | 0.22 | 0.33 | 0.82 | 0.67 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LOQmax | 0.52 | 0.38 | 0.66 | 0.93 | 1.6 | 1.06 |
The models were validated with a set of validation samples, for which the concentrations of α-LA, β-LG and Cas were predicted (Table 2). It is important to mention that two calibration ranges were used for α-LA and β-LG due to the large difference in their expected concentrations among the studied types of milks. Consequently, models for prediction of low protein concentration samples were built by restricting the calibration range to 0.10–0.75 mg mL−1 and 0.20–1.80 mg mL−1 for α-LA and β-LG, respectively, by selecting the corresponding calibration samples from the complete set. This model was employed when the results of either the validation or the milk samples obtained by the primary model (containing the entire calibration range) were in the low concentration range. Employing this approach, the models were suitable for concentration prediction of the target proteins in the studied ranges, despite the presence of signal variations due to the effect of the sample matrix. This fact represents an important advantage to the standard methods for individual protein quantitation in milk, because it allows processing the sample in its original state, i.e. omitting time-consuming sample pre-treatments, or spectra correction steps to deal with the matrix effect.
Validation sample | Milk sample added (%) | α-LA (mg mL−1) | β-LG (mg mL−1) | Cas (mg mL−1) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nominal | Predicted | Nominal | Predicted | Nominal | Predicted | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1: prepared with UHT milk; V2: prepared with HTST milk.a Calculated with low-level calibration. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-01 | 40 | 0.90 | 0.92 | 2.0 | 2.5 | 24 | 24.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-02 | 60 | 0.90 | 0.93 | 2.0 | 2.2 | 24 | 24.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-03 | 80 | 0.90 | 0.94 | 2.0 | 2.2 | 24 | 23.8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-04 | 40 | 0.15 | 0.20a | 0.25 | 0.25a | 28 | 28.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-05 | 60 | 0.15 | 0.24a | 0.25 | 0.33a | 28 | 28.7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-06 | 80 | 0.15 | 0.30a | 0.25 | 0.34a | 28 | 28.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-07 | 40 | 1.25 | 1.22 | 3.4 | 3.8 | 22 | 22.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-08 | 60 | 1.25 | 1.23 | 3.4 | 3.9 | 22 | 22.6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V1-09 | 80 | 1.25 | 1.24 | 3.4 | 3.8 | 22 | 22.8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-01 | 40 | 0.75 | 1.20 | 2.7 | 2.9 | 28 | 28.4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-02 | 60 | 0.75 | 1.30 | 2.7 | 2.8 | 28 | 28.7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-03 | 80 | 0.75 | 1.39 | 2.7 | 2.8 | 28 | 28.7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-04 | 40 | 1.25 | 1.00 | 2.0 | 2.6 | 30 | 29.9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-05 | 60 | 1.25 | 1.10 | 2.0 | 2.7 | 30 | 30.1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-06 | 80 | 1.25 | 1.19 | 2.0 | 1.8 | 30 | 30.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-07 | 40 | 1.75 | 1.50 | 3.5 | 3.3 | 26 | 25.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-08 | 60 | 1.75 | 1.60 | 3.5 | 3.8 | 26 | 25.8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V2-09 | 80 | 1.75 | 1.69 | 3.5 | 3.7 | 26 | 26.2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RMSEP (mg mL−1) | 0.25 | 0.33 | 0.45 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
REP (%) | 25.6 | 13.8 | 1.7 |
Further, LODs and LOQs were calculated for α-LA, β-LG and Cas. These figures of merit were obtained in the form of intervals (min-max) applying the approach proposed by Allegrini et al.,41 which considers the multivariate calibration scenario and whose values depend on the variability of the background composition. The limits obtained for the models, shown in Table 1, are suitable for detection and quantitation of the target analytes in low heat load samples with higher protein concentration. However, according to the expected concentration of α-LA and β-LG in samples treated with high temperatures, there were samples for which the proteins were detectable but non-quantifiable or, in some cases, non-detectable. The validated models were implemented for the quantitation of proteins in commercial milk samples, in order to further evaluate the performance of the method and its applicability to the routine analysis of this kind of samples.
Milk type | Milk sample | α-LA (mg mL−1) | β-LG (mg mL−1) | Cas (mg mL−1) | Total (mg mL−1) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | EC-QCLa | Reference | EC-QCLa | Reference | EC-QCLa | Reference | EC-QCLa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a Recovery (%) between parenthesis. b Calculated with low-level calibration. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pasteurized | M-01 | 1.36 | 1.20 (88) | 3.41 | 3.64 (107) | 25.6 | 24.4 (95) | 31.1 | 29.7 (96) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-02 | 1.43 | 1.24 (87) | 3.61 | 3.54 (98) | 26.0 | 24.5 (94) | 31.7 | 30.2 (95) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-03 | 1.21 | 1.18 (98) | 3.28 | 3.59 (110) | 25.2 | 24.0 (95) | 30.6 | 28.9 (94) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-04 | 1.33 | 1.11 (84) | 3.55 | 3.73 (105) | 25.4 | 24.3 (96) | 30.9 | 29.1 (94) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ESL – filtered | M-05 | 1.20 | 1.21 (101) | 3.02 | 2.44 (81) | 25.4 | 24.1 (95) | 30.8 | 28.9 (94) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-06 | 1.39 | 1.26 (91) | 3.46 | 3.06 (88) | 26.2 | 25.6 (98) | 31.9 | 30.5 (96) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-07 | 1.21 | 1.50 (124) | 3.04 | 2.54 (84) | 24.9 | 24.8 (100) | 30.2 | 28.9 (96) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-08 | 1.28 | 1.58 (123) | 3.34 | 3.28 (98) | 25.9 | 25.8 (100) | 31.5 | 30.1 (96) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ESL – bactofugated | M-09 | 1.00 | 0.88 (88) | 2.57 | 2.44 (95) | 24.7 | 26.3 (107) | 30.0 | 33.0 (110) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-10 | 1.29 | 1.18 (92) | 3.56 | 3.80 (107) | 26.3 | 27.1 (103) | 32.0 | 34.8 (109) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ESL – HTST direct | M-11 | 1.18 | 0.92 (78) | 2.38 | 3.14 (132) | 25.5 | 27.1 (106) | 31.0 | 33.8 (109) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-12 | 1.09 | 1.09 (100) | 2.13 | 2.82 (132) | 24.4 | 24.6 (101) | 29.7 | 32.4 (110) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ESL – HTST indirect | M-13 | 0.61 | 0.47 (77) | 0.25 | 0.55b (220) | 24.6 | 26.1 (106) | 29.9 | 33.0 (110) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-14 | 0.34 | 0.21b (62) | 0.16 | 0.13b (81) | 24.8 | 26.1 (105) | 30.1 | 32.2 (107) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-15 | 0.64 | 0.63 (98) | 0.26 | 0.11b (42) | 25.1 | 27.7 (110) | 30.5 | 33.3 (109) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
UHT | M-16 | 0.12 | 0.11b (92) | 0.12 | 0.11b (92) | 28.5 | 29.8 (105) | 34.7 | 34.4 (99) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-17 | 0.15 | 0.11b (73) | 0.08 | ND | 26.5 | 27.9 (105) | 32.2 | 32.8 (102) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-18 | 0.15 | 0.11b (73) | 0.10 | 0.09b (90) | 27.2 | 28.5 (105) | 33.1 | 33.7 (102) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M-19 | 0.10 | 0.09b (90) | 0.05 | ND | 27.7 | 29.9 (108) | 33.7 | 34.8 (103) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mean recovery (![]() |
90 | 104 | 102 | 102 |
Fig. 4 provides an overview of the differences between milk types considering the concentrations of α-LA and β-LG. The evaluation allows conducting three discriminations. Firstly, there is a clear discrimination between low and high heat load samples (indicated by blue and red ellipses, calculated at a confidence level of 99%). The low heat load samples include the milk types produced with soft processing methods such as pasteurized, ESL filtered, ESL bactofugated and ESL HTST direct milk. High heat load samples contain ESL HTST indirect and UHT milk. The threshold for discrimination is 1.25 mg mL−1 β-LG and 0.75 mg mL−1 α-LA. Secondly, it is also possible to distinguish between the different heating technologies within one milk type. ESL HTST milk can be produced by direct and indirect heating systems which have influence on the experienced chemical modifications. Direct heating is a milder method leading to less protein degradation; consequently, ESL HTST direct milk contains higher levels of both β-LG and α-LA. Thirdly, successful separation could also be achieved between ESL HTST indirect and UHT milk. Both heating procedures are rather intensive, leading to an excessive degeneration of the temperature sensitive β-LG. However, for the analyzed samples within this study, the evaluation of α-LA enables to discriminate between ESL HTST indirect (light red) and UHT (dark red) milk with a threshold of 0.2 mg mL−1. This fast discrimination method of commercial bovine milk types holds large potential for application in the milk industry. Since no time consuming pre-processing steps are required in contrast to currently employed HPLC methods, this QCL-IR method represents a useful tool for at-line quality control and process analytical applications.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c9an00746f |
This journal is © The Royal Society of Chemistry 2019 |