Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Thermal quenching (TQ) seriously restricts the practical application of phosphor-converted light emitting diodes (LEDs), especially for high-power operation. More recently, considerable effort has been devoted to minimizing the emission loss with increasing temperature via the formation of defect levels; however, the specific compensation mechanism of carriers is poorly understood. Here, the commercial silicate phosphor Sr3SiO5:Eu2+ exhibiting zero-TQ is delicately developed by reconstructing the defect structure with the introduction of Tm3+ ions. The induced available deep traps are employed to trap carriers effectively, which inhibits energy loss in the form of phonons as a non-radiative process. Subsequently, the carriers released by thermal disturbance transfer energy to the activators of Eu2+, compensating the luminous intensity loss significantly. The explored Sr3SiO5:Eu2+,Tm3+ phosphor exhibits long-term stability without suffering from a luminous intensity decrease or color deviation, which is ascribed to the dynamic equilibrium between capturing and releasing carriers with the assistance of thermal energy. Furthermore, the phosphor-converted white LEDs (pc-wLEDs) produced with the as-prepared phosphor maintain the zero-TQ properties with excellent stability of the luminous intensity and color even up to 120 °C.

Graphical abstract: Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps

Page: ^ Top