Issue 11, 2018

Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance

Abstract

In the past few years, Ni(OH)2 has been found to be an effective cocatalyst for photocatalytic hydrogen evolution. Herein, we report that it can also be used to enhance the photoreduction of CO2 into chemical fuels. Vertically aligned Ni(OH)2 nanosheets are deposited onto electrospinning TiO2 nanofibers via simple wet-chemical precipitation to manufacture TiO2/Ni(OH)2 hybrid photocatalysts. The TiO2 nanofibers can direct the ordered growth of Ni(OH)2 nanosheets, which have a thickness of 20 nm and uniformly cover the surface of the TiO2 substrate. The TiO2/Ni(OH)2 hierarchical composite displays remarkably improved photocatalytic CO2 reduction activity compared to that displayed by pristine TiO2 fibers. The bare TiO2 can only produce methane and carbon monoxide (1.13 and 0.76 μmol h−1 g−1, respectively) upon CO2 photoreduction. After loading 0.5 wt% Ni(OH)2, the methane yield increases to 2.20 μmol h−1 g−1, meanwhile the CO yield is unchanged. Interestingly, alcohols (methanol and ethanol) also appear as products, in addition to CH4 and CO, over the TiO2/Ni(OH)2 hybrid, and the maximum yield is reached with 15 wt% Ni(OH)2 loading (0.58 and 0.37 μmol h−1 g−1 for methanol and ethanol, respectively). This can be ascribed to an enhanced charge separation efficiency and higher CO2 capture capacity due to the presence of Ni(OH)2. These results demonstrate that Ni(OH)2 can not only improve the total CO2 conversion efficiency, but can also alter the product selectivity upon photocatalysis. This work opens a new pathway for achieving high-efficiency photocatalytic CO2 reduction with Ni(OH)2 as a cocatalyst.

Graphical abstract: Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2017
Accepted
14 Feb 2018
First published
15 Feb 2018

J. Mater. Chem. A, 2018,6, 4729-4736

Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance

A. Meng, S. Wu, B. Cheng, J. Yu and J. Xu, J. Mater. Chem. A, 2018, 6, 4729 DOI: 10.1039/C7TA10073F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements