Issue 4, 2018

In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries

Abstract

The traditional oxygen reduction/evolution reaction (ORR/OER) catalysts are mainly noble metal-based materials, but their scarcity and instability impede their practical applications, especially in Zn–air batteries. Hence, identifying a bifunctional catalyst with low-cost and high-stability is very crucial for Zn–air batteries. Herein, we report a simple method to prepare core–shell-structured Co@Co3O4 nanoparticles encapsulated into N-doped carbon polyhedra by carbonization and controlled oxidation of metal–organic frameworks (MOFs), which are then applied as a bifunctional catalyst for Zn–air batteries. Using such a configuration, enhanced performances, including a high power density of ∼64 mW cm−2, a stable voltage profile over 80 h battery operation with four mechanical recharges, a small discharge/charge overpotential of ∼0.66 V and a long-life of 100 cycles for 200 h operation at 5 mA cm−2, have been achieved. These excellent performances can be attributed to abundant graphited carbon and CNTs, high N-doping, plentiful pores, the synergy between the semiconductive Co3O4-coating layer and the conductive Co bulk, and the uniform Co@Co3O4 nanoparticles in this catalyst which effectively improve electrical conductivity/ion transfer and further concertedly promote the catalytic activity towards the ORR/OER. Moreover, the belt-shaped polymer Zn–air battery with this catalyst also shows good electrochemical stability under different deformations.

Graphical abstract: In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
12 Nov 2017
Accepted
13 Dec 2017
First published
14 Dec 2017

J. Mater. Chem. A, 2018,6, 1443-1453

In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries

Z. Guo, F. Wang, Y. Xia, J. Li, A. G. Tamirat, Y. Liu, L. Wang, Y. Wang and Y. Xia, J. Mater. Chem. A, 2018, 6, 1443 DOI: 10.1039/C7TA09958D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements