Issue 43, 2018

Modelling DNA extension and fragmentation in contractive microfluidic devices: a Brownian dynamics and computational fluid dynamics approach

Abstract

Fragmenting DNA into short pieces is an essential manipulation in many biological studies, ranging from genome sequencing to molecular diagnosis. Among various DNA fragmentation methods, microfluidic hydrodynamic DNA fragmentation has huge advantages especially in terms of handling small-volume samples and being integrated into automatic and all-in-one DNA analysis equipment. Despite the fast progress in experimental studies and applications, a systematic understanding of how DNA molecules are distributed, stretched and fragmented in a confined microfluidic field is still lacking. In this work, we investigate the extension and fragmentation of DNA in a typical contractive microfluidic field, which consists of a shear flow-dominated area and an elongational flow-dominated area, using the Brownian dynamics-computational fluid dynamics method. Our results show that the shear flow at the straight part of the microfluidic channel and the elongational flow at the contractive bottleneck together determine the performance of DNA fragmentation. The average fragment size of DNA decreases with the increase of the strain rate of the elongational flow, and the upstream shear flow can significantly precondition the conformation of DNA to produce shorter and more uniform fragments. A systematic study of the dynamics of DNA fragmentation shows that DNA tends to break at the mid-point when the strain rate of elongational flow is small, and the breakage point largely deviates from the midpoint as the strain rate increases. Our simulation of the thorough DNA fragmentation process in a realistic microfluidic field agrees well with experimental results. We expect that our study can shed new light on the development of future microfluidic devices for DNA fragmentation and integrated DNA analysis devices.

Graphical abstract: Modelling DNA extension and fragmentation in contractive microfluidic devices: a Brownian dynamics and computational fluid dynamics approach

Supplementary files

Article information

Article type
Paper
Submitted
27 Apr 2018
Accepted
09 Oct 2018
First published
10 Oct 2018

Soft Matter, 2018,14, 8780-8791

Modelling DNA extension and fragmentation in contractive microfluidic devices: a Brownian dynamics and computational fluid dynamics approach

S. Wu, C. Li, Q. Zheng and L. Xu, Soft Matter, 2018, 14, 8780 DOI: 10.1039/C8SM00863A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements