Open Access Article
Kavita
Garg
b,
Mihir
Ghosh
b,
Tamar
Eliash
b,
Jessica H.
van Wonderen
c,
Julea N.
Butt
c,
Liang
Shi
d,
Xiuyun
Jiang
e,
Futera
Zdenek
e,
Jochen
Blumberger
e,
Israel
Pecht
*f,
Mordechai
Sheves
*b and
David
Cahen
*a
aDepartment of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel. E-mail: david.cahen@weizmann.ac.il
bDepartment of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel. E-mail: mudi.sheves@weizmann.ac.il
cSchool of Chemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
dDepartment of Biological Sciences and Technology, School of Environmental Sciences, China University of Geosciences, Wuhan, China 430074
eDepartment of Physics and Astronomy and Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, UK
fDepartment of Immunology, Weizmann Institute of Science, Rehovot, Israel
First published on 27th July 2018
Multi-heme cytochrome c (Cytc) proteins are key for transferring electrons out of cells, to enable intracellular oxidation to proceed in the absence of O2. In these proteins most of the hemes are arranged in a linear array suggesting a facile path for electronic conduction. To test this, we studied solvent-free electron transport across two multi-heme Cytc-type proteins: MtrF (deca-heme Cytc) and STC (tetra-heme Cytc). Transport is measured across monolayers of these proteins in a solid state configuration between Au electrodes. Both proteins showed 1000× higher conductance than single heme, or heme-free proteins, but similar conductance to monolayers of conjugated organics. Conductance is found to be temperature-independent (320–80 K), suggesting tunneling as the transport mechanism. This mechanism is consistent with I–V curves modelling, results of which could be interpreted by having protein-electrode coupling as rate limiting, rather than transport within the proteins.
Several mechanisms for electron transfer (ET) in these multi-heme proteins (in solution/in the membrane) have been suggested and analyzed, including band-like transport,8 flickering resonance (FR),9 superexchange-mediated tunneling (SE),10 and charge hopping.5 In a recent review we suggested that ET across the fully solvated protein deca-heme Cytc (MtrF) occurs by stepwise (incoherent) transport, electron hopping, between neighboring Fe2+/Fe3+ heme pairs.10 The relatively small electronic coupling between heme cofactors (compared to DNA bases for example) makes FR and SE unlikely as dominant ET mechanisms in multi-heme proteins. Here we address the question of which mechanism(s) dominate in solid state electron transport via dry multi-heme proteins, a process which has similarities with, but also clear differences from, ET in aqueous solution, as discussed in detail in ref. 11 and 12.
ETp has been studied in a variety of proteins, using “dry” junctions of monolayers,11,13,14 in which the proteins maintain only structural, tightly bound H2O. In such junctions the donor and acceptor, involved in ET in solution,15 are replaced by metallic contacts of nm-s to mm size, and electron transport is measured as the current, I, as a function of applied voltage, V (I–V characteristics). Such junctions also allow temperature-dependent I–V measurements.
STM-based solid state I–V measurements showed deca-heme proteins (MtrF, MtrC and OmcA) to be good electron conductors.6,16,17 As noted in a 2014 summary of literature data,13 current values reported by STM measurements have a wide spread, which can be due to factors such as the presence of a vacuum, or air (as in ref. 6, 16 and 17) gap contact geometry, and/or low S/N ratio (relative to larger-area junctions). Also, possible future devices are unlikely to use STM contacts. Thus here we use larger area contacts to help provide insight into multi-heme protein solid state ETp.
To that end we study two multi-heme proteins, the 3-dimensional crystal structures of which have been determined, viz. a tetra-heme Cytc protein (STC)18 and a larger deca-heme protein, MtrF, one of the largest among the multi-heme cytochromes in extra-cellular electron transport.19,20
![]() | ||
| Fig. 1 Schematic representation of: (a) STC protein on Au using crystal structure (pdb: 1m1q), (b) MtrF protein on Au using crystal structure (pdb: 3pmq). Note, the actual adsorbed structure may differ from the schematic shown here. | ||
The monolayers were formed by incubating the proteins on freshly cleaned and activated Au substrates at 4 °C for 4 h. The resulting protein monolayers were found by ellipsometry to be 4.0 ± 0.1 nm and 2.2 ± 0.1 nm thick, for MtrF and STC, respectively; nano-scratching with the tip of an atomic force microscope (AFM) gave 4.8 ± 0.5 nm and 2.4 ± 0.5 nm for MtrF and STC, respectively (Fig. S3 and S4†). Comparison of these values with the crystal structures of these proteins, indicates that MtrF bound in a roughly upright position; because this protein has a shape, somewhat akin to that of a staggered cross (Fig. 1(b)), we cannot define a unique height, but describe it by three lengths, 5.8 nm and 5.3 nm at the edges and 2.9 nm in the middle, which may be consistent with ∼4.0 nm thickness, in agreement with the ellipsometry-derived value. In STC the theoretical length, determined by crystal structure (pdb 1m1q) is 3.7 nm and the observed monolayer width is 2.2 nm (Fig. 1(a)). To fit to the determined thickness, we assume that the protein is tilted from the normal. We note that for both the proteins other orientations are also possible with similar thicknesses. AFM measurements (in tapping mode), indicated that the monolayers were compactly packed with rms roughness of 0.9 nm and 2.1 nm for STC and MtrF, respectively (Fig. 2(a) and (b)). Amide I and amide II peaks at 1664 and 1538 cm−1, respectively, in the polarization modulation-infrared reflection-absorption spectra (PMIRRAS), are evidence for the presence of the protein attached to Au (Fig. 2(c)). The integrity (secondary structure) of the protein in the monolayers was confirmed by UV-Vis absorption spectroscopy. To that end monolayers were formed on quartz by S–S linkages using (3-mercaptopropyl)-trimethoxysilane (MPTMS) as the linker. The Soret band of MtrF at 412 nm and STC at 409 nm were found to be the same in the monolayers as in solution (Fig. 3(a)). This confirms that there is no significant change in the molecular environment of the heme groups upon monolayer formation, suggesting that there is no change in the protein conformation.
![]() | ||
| Fig. 2 (a) AFM image of MtrF and, (b) STC monolayers on gold using the tapping mode. (c) PMIRRAS of MtrF and STC monolayers on Au. | ||
Creating molecular junctions for I–V measurements requires care, so as not to damage the protein, i.e., electrical contacts have to be nondestructive. At the same time the junction has to be stable over a wide temperature range to allow low-noise, low-current measurements. To this end, we used two techniques: the first is the “suspended-nanowire” technique,22,23 with which I–V can be measured from RT to 80 K (to 10 K, if needed), and the second uses InGa eutectic as the top contact for the RT measurements.24 For the suspended nanowire technique, the protein monolayer was coupled covalently, as described above, to pre-patterned Au microelectrodes (Fig. 3(b)). Au nanowires, ∼300 nm in diameter and ∼4 μm long, were trapped di-electrophoretically onto the electrodes (Fig. 3(b)), as reported previously.25 In total we made ∼325 Au-protein-Au junctions, of which 65 MtrF junctions and 80 junctions for STC had the desired configuration (nanowire aligned, short on one side, details in ESI† (Fig. 3(b))), based on RT I–V measurements.
Among these groups of junctions, 10 were chosen that had the statistically most probable currents at 0.5 V, as deduced from a Gaussian fit of currents via all junctions, for measurements down to 80 K. Details of statistics of all junctions are given in the ESI (Fig. S1†).
Three orders of magnitude higher conductance was observed via the STC protein junctions than via the blue Cu protein azurin (Az) junctions,28 which forms monolayer junctions of similar thickness (2 ± 0.2 nm), (Fig. 4(b)). The comparison measurements on Az were done using the same contacts and measurement method to exclude the effect of contact resistance. For MtrF, even though its monolayer thickness is double that of Az monolayers, i.e., the separation between electrodes is twice that of Az junctions, I–V curves, very similar to those of Az were observed (Fig. 4(b)). The observed higher conductance of STC compared to that of Az, and the similar conductance of MtrF to that of the much smaller Az, is consistent with the idea that the multi-heme arrays in MtrF and STC can markedly enhance conductance. Similar I–V curves have been obtained for MtrF and STC when, instead of a Au nanowire, an InGa top contact was employed (Fig. 4(d)). For those experiments monolayers were formed on freshly cleaned Au substrates (100 nm thick) with freshly made InGa as the top contact (scheme given in the ESI†).
![]() | ||
Fig. 4 (a) ln I–V curves obtained using suspended nanowire junctions. (b) Coherent tunneling fit (solid lines) of the experimental I–V curves (circles) of STC, MtrF and Az (for comparison) (linear I–V curves are given in Fig. S2†). (c) ln I vs. 1000/T curves obtained using suspended nanowire junctions; (d) ln J–V curves obtained using Au substrate with InGa eutectic as the top contact for STC and MtrF monolayers. | ||
To further compare the present results with those obtained with other proteins, current densities for STC and MtrF are estimated assuming the maximum contact area for the nanowire method of 0.03 × 0.1 μm2. The current density at 0.05 V was calculated to be ∼0.3 A cm−2 and 2 × 102 A cm−2 for MtrF and STC, respectively. Earlier we have reported results of ETp measurements via monoheme cytochrome c (Cytc) and Az, which impose a similar electrode separation (∼2 nm), and also bind covalently via a cysteine thiolate to one of the electrodes. Those proteins, though, were measured in a different device configuration, namely Si/SiO2 (1 nm)/linker (0.6 nm)/protein/Hg. The SiO2 and (an organic molecule) linker add an insulating layer of ∼16 Å, which lowers the currents by some 5 orders of magnitude, assuming a current decay factor, β, across SiO2 and alkane chains in solid state junctions (with molecules sandwiched between electrodes) as 0.7 Å−1 (for mostly saturated molecules β for transport across molecules in these junctions is 0.6–1.0 Å−1).29–32 The current density values after correction (Table 1) for two Cytc mutants (E104C, V11C) that bind to the Au electrode via cysteines26 and for Az27 are 0.2–0.5 A cm−2 at 0.05 V. These values are similar to those we have now determined for MtrF (which is double the size of the former proteins; 4 nm). In contrast, for STC, which is the same size (2 nm, namely yielding similar electrode separation as with Az and Cytc) we observe a 103× higher conductance.
To compare the conductivity of these proteins with other proteins, saturated molecules and conjugated molecules, we update and present here an earlier summary of data (current density (J [A nm−2]) at 0.1 V vs. molecule length (Å) in the junction, (i.e., separation between the electrodes).13 The bias of 0.1 V is used, because most data are from the literature and reliable data at lower bias are scarce. By adding STC and MtrF to this plot, we clearly see that their data points are in the region of conjugated molecules (Fig. 5). Thus, at this point we tentatively conclude that monolayers of MtrF and STC conduct like monolayers of conjugated molecules.
![]() | ||
| Fig. 5 Current densities at 0.1 V [A nm−2] as a function of junction width [Å] (the shaded areas provide visual guides only). Extrapolated data points corresponding to MtrF and STC are indicated by arrows. Where applicable, the data are corrected for the current attenuation by 1 nm Si oxide and 0.7 nm saturated organic linker (as described in text). Adapted with permission from ref. 13, Amdursky et al., John Wiley and Sons. | ||
Modeling I–V curves can (help to) identify the current-limiting transport mechanism. In the coherent tunneling model of Simmons the protein matrix is approximated by a single effective energy barrier with height ϕ, length L and symmetry factor α as fitting parameters,33,34
| I ∝ exp[−(ϕ − αV)1/2L]. |
To gain further insight into the possible transport mechanisms, temperature-dependence of the ETp via the proteins was measured. No temperature dependence of the current at 50 mV was observed from 80 to 300 K (averaged data shown in Fig. 4(c)). Such behavior is consistent with a coherent tunneling mechanism, the model now used to fit the experimental I–V curves. Since ETp are temperature-independent, the possibility of flickering resonance, as the mechanism for conduction, is unlikely.10 Such temperature-independent ETp behavior is also inconsistent with a hopping mechanism.11 Theoretically, for electron transfer – a mechanism involving delocalization of orbitals of conjugated molecules37 – hopping could be temperature-independent.
It was suggested earlier that super-exchange-mediating tunneling could be the dominant but not exclusive coupling mechanism for long-range ET.38 Since the mediating states and energy gaps are rarely identified for this mechanism, it is difficult to define exactly whether it is tunneling or super-exchange-mediated-tunneling. Still tunneling, is the most plausible mechanism as validated by the theoretical fitting of the experimental I–V curve. This tunneling behavior can be assumed to be intrinsic to the protein, because if transport across the protein monolayers was temperature-dependent, tunneling into and out of the proteins from/to the electrode, would not be sufficient to yield temperature-independent transport.
This can be related to having ET via electron tunneling within folded peptide or proteins; occur through covalently linked or hydrogen-bonded pathways between donor and acceptor moieties.38,39 Thus, at this point we tentatively conclude that MtrF and STC monolayers conduct somewhat like conjugated molecules, via tunneling.
000 rpm for 30 min. The solubilized protein supernatant was loaded onto 10 ml of Ni2+-NTA histidine-tagged agarose column (flow rate of 1.4 ml min−1) that has been pre-equilibrated with buffer A in 277 K. The column was washed with 40 ml of each of the following ice-cold buffers in sequential order: buffer D (20 mM HEPES, pH 7.8, 300 mM NaCl, 0.5% CHAPS, 10% glycerol and protease inhibitor), buffer E (buffer D and 10 mM imidazole), and buffer F (buffer D and 40 mM imidazole) in 277 K. The final elution of the protein was obtained with ice cold buffer G (buffer D, 250 mM imidazole and 10% glycerol) and we collected 1.5 ml per fraction at 277 K. The eluted protein was washed and concentrated using 20 mM HEPES, pH 7.8, 30 mM NaCl, 0.17% (wt/vol) CHAPS in 277 K. Aliquots of purified MtrF were stored using 20 mM HEPES, pH 7.5, 100 mM NaCl, 0.5% (wt/vol) CHAPS and 10% glycerol in 193 K. A CD spectrum of the protein was measured to check the protein secondary structure (Fig. S6†).
561 Da in excellent agreement with that predicted (13
558 Da) for the mature protein with four covalently bound hemes. Aliquots of purified S87C STC (200 μM) in 20 mM TRIS, 100 mM NaCl, pH 8.5 were stored frozen at 193 K. CD spectrum of the protein was measured to check the protein secondary structure (Fig. S6†).
The scratching procedure was performed in contact mode, a 1 × 1 μm2 square area was scanned with a large tip force (60 nN). The applied force is sufficiently large to scratch away the monolayer, but not sufficient to scratch the gold surface. After the scratching procedure, we switched back to Scanasyst mode to re-scan over a larger area, centered around the resulting hollow space after scratching (Fig. S1†).
| I(V) = Ai(V) | (1) |
![]() | (2) |
![]() | (3) |
Footnote |
| † Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc01716f |
| This journal is © The Royal Society of Chemistry 2018 |