Open Access Article
Mark
Abubekerov
a,
Junnian
Wei‡
a,
Kevin R.
Swartz
a,
Zhixin
Xie
b,
Qibing
Pei
b and
Paula L.
Diaconescu
*a
aDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. E-mail: pld@chem.ucla.edu
bDepartment of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
First published on 11th January 2018
Poly(L-lactide) (PLA) is a bioderived and biodegradable polymer that has limited applications due to its hard and brittle nature. Incorporation of 1,3-trimethylene carbonate into PLA, in a block copolymer fashion, improves the mechanical properties, while retaining the biodegradability of the polymer, and broadens its range of applications. However, the preparation of 1,3-trimethylene carbonate (TMC)/L-lactide (LA) copolymers beyond diblock and triblock structures has not been reported, with explanations focusing mostly on thermodynamic reasons that impede the copolymerization of TMC after lactide. We discuss the preparation of multiblock copolymers via the ring opening polymerization (ROP) of LA and TMC, in a step-wise addition, by a ferrocene-chelating heteroscorpionate zinc complex, {[fc(PPh2)(BH[(3,5-Me)2pz]2)]Zn(μ-OCH2Ph)}2 ([(fcP,B)Zn(μ-OCH2Ph)]2, fc = 1,1′-ferrocenediyl, pz = pyrazole). The synthesis of up to pentablock copolymers, from various combinations of LA and TMC, was accomplished and the physical, thermal, and mechanical properties of the resulting copolymers evaluated.
The solid state molecular structure of [(fcP,B)Zn(μ-OCH2Ph)]2 was determined using single-crystal X-ray diffraction (Fig. 1). The coordination environment around each zinc center is a distorted tetrahedron (τ = 0.75).47 The supporting ligands are bound in a κ2 fashion via the pyrazole nitrogens, while the phosphine moieties are not coordinated and the benzoxide groups are in a bridging position between the two metal centers.
![]() | (1) |
![]() | ||
| Fig. 1 Molecular structure drawing of [(fcP,B)Zn(μ-OCH2Ph)]2 with thermal ellipsoids at 50% probability; hydrogen atoms and disordered counterparts are omitted for clarity. | ||
In solution, a single species is observed by NMR spectroscopy (Fig. S1–S4†), with the resonance signals similar to those of previously reported (fcP,B)Zn complexes.37 For example, the 31P{1H} NMR spectrum of [(fcP,B)Zn(μ-OCH2Ph)]2 shows a singlet at δ = −15.5 ppm. Similar chemical shifts of δ = −16.4 and −15.5 ppm were observed for a coordinated phosphine in (fcP,B)ZnCl and a free phosphine in fc(PPh2)[B(OMe3)2], respectively.37 Such minor differences in the 31P{1H} NMR spectra between free and zinc(II)-coordinated phosphines are commonly observed and are attributed to weak interactions between the soft phosphine ligands and the oxophilic zinc(II) centers.48 Diffusion ordered spectroscopy (DOSY) NMR49 experiments were conducted with (fcP,B)ZnCl and [(fcP,B)Zn(μ-OCH2Ph)]2 (Fig. S15 and S16†) to determine if the latter exists as a dimer in solution. Based on the Stokes–Einstein relationship,49 the ratio of the radii of [(fcP,B)Zn(μ-OCH2Ph)]2 to (fcP,B)ZnCl is 1.63. This value is somewhat below the expected value of 2 for the dimer, as derived from the comparison of volumes from the solid state structures. However, 1H Nuclear Overhauser Effect Spectroscopy (NOESY) studies of [(fcP,B)Zn(μ-OCH2Ph)]2 show a binding motif similar to that observed in the solid state structure. Interactions between the protons of the pyrazole methyl groups and the benzoxide ligand are observed in the 2D plot, while the interactions between the phosphine phenyl groups and the benzoxide are not observed (Fig. S10 and S11†). Additionally, a variable temperature NMR study was performed. The spectra of [(fcP,B)Zn(μ-OCH2Ph)]2 show no significant changes in the range of 298–352 K (Fig. S9†), suggesting that the speciation of the complex remains the same in solution even at elevated temperatures. The addition of an excess of a hard Lewis base, such as pyridine, to [(fcP,B)Zn(μ-OCH2Ph)]2 in C6D6 yields a simple mixture of the two compounds at ambient temperature (Fig. S14†). A lack of an interaction between the zinc complex and pyridine suggests that Lewis bases, similar to monomers prior to being ring opened, do not disrupt the dimeric structure of the zinc complex.
The stability of [(fcP,B)Zn(μ-OCH2Ph)]2 was evaluated both in the presence and absence of a substrate. In the absence of a monomer, [(fcP,B)Zn(μ-OCH2Ph)]2 slowly decomposes in benzene at ambient temperature, reaching 7.0% decomposition after 24 h (Fig. S26†). Heating the compound at 100 °C in benzene results in 34% decomposition after 1.5 h (Fig. S27†). However, in the presence of a monomer, no decomposition is observed, even at elevated temperatures (70 °C) for 3 h (Fig. S28†).
Next, we looked at the identity of the catalytically active species in the case of each monomer. In order to evaluate if it remains a dimer during polymerizations, an attempt to characterize the product corresponding to the ring opening of a single equivalent of monomer was made. Due to its slow rate of polymerization at ambient temperature, L-lactide was chosen as the model substrate. On an NMR scale, addition of two equivalents of L-lactide to [(fcP,B)Zn(μ-OCH2Ph)]2 resulted in the formation of a single major species (Fig. S12†) after 2 hours at ambient temperature. Performing a DOSY NMR experiment on this product yielded a slower diffusion rate than for the parent complex (Fig. S17†), consistent with the retention of the dimeric state post incorporation of one equivalent of L-lactide per metal center. These results are reproduced during quenching experiments of L-lactide polymerizations (Fig. 2). A DOSY NMR experiment performed with [(fcP,B)Zn(PLA)36(OCH2Ph)]2 yielded a diffusion rate of 1.04 × 10−6 m s−2 (Fig. S20†). Water was then added to the same sample resulting in the hydrolysis of the polymer chains from the zinc catalyst and the formation of [(fcP,B)Zn(μ-OH)]2. The free polymers, PhCH2O(PLA)36H, displayed a diffusion rate of 2.00 × 10−6 m s−2 (Fig. S21†). Since the diffusion rate of a molecule is inversely proportional to its hydrodynamic radius, two polymer chains bound together by a catalyst will diffuse at half the rate of a single polymer chain. The doubling of the diffusion rate upon hydrolysis of the active polymerization species is consistent with the liberation of polymer chains from a dimeric species. Similar results were obtained in the case of TMC polymerization (Fig. S18 and S19†) suggesting that the catalytically active species is a dimer in both cases.
The conversion of L-lactide was monitored by 1H NMR spectroscopy for varying concentrations of monomer, in benzene at 70 °C. In all cases, first-order kinetics were observed via the semilogarithmic plots of several polymerizations (Fig. 3). The order in pre-catalyst was determined via the logarithmic plot of the metal complex concentration against kapp (Fig. 4) displaying first-order kinetics and yielding the following rate law (eqn (2)):
| −d[LA]/dt = k[Zn2]1[LA]1 | (2) |
![]() | ||
Fig. 4 Plot of ln kappvs. ln[Zn] for the polymerization of L-lactide with [(fcP,B)Zn(μ-OCH2Ph)]2 as a catalyst (C6H6, 70 °C, [LA]0 = 0.313 M). | ||
A first-order in both monomer and pre-catalyst is commonly observed for metal mediated ring-opening polymerizations. In particular, a clear order in catalyst is consistent with a well-behaved system in solution and the retention of the dimeric state by the catalyst throughout the polymerization process.50,51
Finally, we looked at the preparation of LA/TMC homopolymers as well as, in keeping with the ca. 20% by weight optimal composition, the preparation of a variety of multiblock copolymers. In all cases, the multiblock copolymers were prepared via the sequential addition of monomer to the growing polymer chain. Utilizing our system, the copolymerization of TMC and LA is not limited by the order of monomer addition. The percent by weight composition of TMC was kept within 15–20%, and the number average molar mass was kept at ca. 50
000 g mol−1. We reasoned that attempting to maintain these variable relatively constant would allow us to probe the influence that the copolymer microstructure has on the physical properties of the corresponding materials.
Polymerization of ca. 100 equivalents of TMC (Table 1, entry 2) reaches completion at room temperature within one hour. Polymerization of L-lactide at room temperature is much slower and requires up to 24 hours for the same number of equivalents to reach completion. Raising the temperature to 70 °C results in a complete conversion within an hour. In both cases, the polymerizations are well controlled. The molar masses increase with conversion while retaining low dispersity (Đ) values (Fig. S45 and S46 and Tables S1 and S2†).
| Entry | Polymer | PTMC (wt%) | PLA (wt%) | M n (TMC, NMR) | M n (LA, NMR) | M n (NMR) | M n (SEC) | Đ |
|---|---|---|---|---|---|---|---|---|
| a Conditions: benzene as a solvent (1.5 mL) and hexamethylbenzene as an internal standard. All experiments were performed at 70 °C, except for those corresponding to entry 2 and the first blocks of entries 3, 5, 7, and 8, which were performed at ambient temperature. The order of block preparation is illustrated from right to left in the final copolymer. The respective monomer loading (Fig. S31–S40) is distributed evenly between the blocks of each type. Mn are reported in 103 g mol−1; Đ = Mw/Mn. Values for Mn calculated using NMR spectroscopy are based on integration of polymer peaks versus the internal standard and take into account monomer conversion. | ||||||||
| 1 | PLA | — | 100 | — | — | 40.7 | 39.8 | 1.14 |
| 2 | PTMC | 100 | — | — | — | 10.4 | 9.0 | 1.01 |
| 3 | PLA-b-PTMC | 19 | 81 | 10.0 | 43.7 | 53.7 | 55.5 | 1.12 |
| 4 | PTMC-b-PLA | 17 | 83 | 8.0 | 39.5 | 47.5 | 47.0 | 1.60 |
| 5 | PTMC-b-PLA-b-PTMC | 18 | 82 | 8.7 | 40.8 | 49.5 | 43.2 | 1.67 |
| 6 | PLA-b-PTMC-b-PLA | 17 | 83 | 9.0 | 43.7 | 52.7 | 55.6 | 1.46 |
| 7 | PLA-b-PTMC-b-PLA-b-PTMC | 19 | 81 | 10.2 | 42.9 | 53.1 | 48.2 | 1.49 |
| 8 | PTMC-b-PLA-b-PTMC-b-PLA-b-PTMC | 18 | 82 | 9.8 | 45.2 | 55.0 | 58.9 | 1.49 |
| 9 | PLA-b-PTMC-b-PLA-b-PTMC-b-PLA | 19 | 81 | 10.0 | 42.3 | 52.3 | 53.2 | 1.69 |
| 10 | PLA-b-PTMC-b-PLA | 10 | 90 | 5.2 | 47.5 | 52.7 | 50.8 | 1.29 |
| 11 | PLA-b-PTMC-b-PLA | 30 | 70 | 15.9 | 36.8 | 52.7 | 48.9 | 1.42 |
| 12 | PLA-b-PTMC-b-PLA | 39 | 61 | 22.1 | 34.5 | 56.6 | 51.2 | 1.68 |
Although the homopolymerization of TMC proceeds quickly at ambient temperature, elevated temperatures are required to polymerize it after L-lactide due to the nature of the intermediate formed after the ring opening of lactide that features a five-membered chelate.32,52–57 This difference in shifting the polymerization of TMC from room temperature, as in the case of PLA-b-PTMC (Table 1, entry 3), to elevated temperatures, as in the case of PTMC-b-PLA (Table 1, entry 4), manifests itself in the broadening of the molar mass distributions (Fig. 5). As a result, the dispersity values are larger for the copolymers subjected to TMC polymerization at elevated temperatures, ranging from 1.45 to 1.69 (Table 1, entries 4–9), then for the polymers that were not (Table 1, entries 2–3).
The block structures of the polymers are consistent with observations from the 1H NMR spectra. In all cases, the copolymer peaks appear as a superposition of the signals corresponding to individual blocks (Fig. 6 and S31–S40†), a defining characteristic of true block copolymers.20 Alternatively, both gradient and random block copolymers of TMC and LA yield broadened peaks for PTMC and a distribution of peaks in the methine region of PLA.20 The junctions of the copolymer19,58 can also be clearly observed in the 13C NMR spectrum of the pentablock copolymers (Fig. 7 and S41†).19,20 DOSY NMR experiments carried out with the triblock and pentablock copolymers (Fig. S22–S25†) show the same diffusion rate for both the PLA and the PTMC segments in all cases, further supporting a block copolymer formation. Additionally, 1H NMR spectra of aliquots collected during the preparation of the PLA-b-PTMC-b-PLA-b-PTMC-b-PLA copolymer show the stepwise growth of each block (Fig. S44†). Similarly, the corresponding SEC (size exclusion chromatography) traces of the same aliquots show an increase in molar mass with every additional block (Fig. 8). The benzoxide end group is clearly observed and diffuses at the same rate as the polymers in DOSY NMR spectra for both homopolymers, both in the case of the polymers still attached to the catalyst and in free polymers (Fig. S18–S21†). The downfield shift in 1H NMR spectra of the benzoxide methylene protons from 4.03 ppm in the parent complex to 4.72 ppm and 4.94 ppm in the ring-opening polymerization products of LA and TMC, respectively, is also indicative of the participation of the benzoxide group in the ring-opening process of the monomers.19 The experiments described above suggest that these polymerization processes proceed via a living mechanism.59
![]() | ||
| Fig. 6 1H NMR spectrum (CDCl3, 500 MHz, 298 K) of PTMC-b-PLA-b-PTMC-b-PLA-b-PTMC (Table 1, entry 8); see Fig. S36† for integration values. | ||
The differential scanning calorimetry (DSC) curves for the newly synthesized block copolymers display Tg and Tm values corresponding to isotactic PLA only (Table 2 and Fig. S64–S70†). Even at high sample loadings, the Tg corresponding to PTMC could not be detected (Fig. S63†), likely due to the relatively low content of PTMC in each copolymer. Only when we examined copolymers with a ca. 40% weight composition of TMC, could we detect the Tg corresponding to PTMC (Table 2, entry 11; Fig. S73†). In general, both the Tg and the Tm values are observed to decrease with the increasing number of blocks in the polymer. This depression of the Tg and Tm values is a known phenomenon in poly(L-lactide) chemistry;60 the inclusion of amorphous polymer segments influences the crystallization behavior of the semicrystalline PLA fragments and improves the polymer chain mobility.61–63
| Entry | Polymer structure | PTMC (wt%) | T g (°C) | T g (°C) | T m (°C) | E (MPa) | σ (MPa) | ε (%) |
|---|---|---|---|---|---|---|---|---|
| a Glass transition temperatures and melting points were determined using DSC. b Young's modulus. c Ultimate tensile strength. d Elongation at break. Material properties corresponding to entries 2 and 3 are averages of two different batches of materials (Fig. S75 and S76). Average values for multiple runs are reported along with the standard error. | ||||||||
| 1 | PLA | 0 | — | 55 | 173 | 1733 ± 108 | 49 ± 3 | 11 ± 4 |
| 2 | PLA-b-PTMC | 19 | — | 42 | 173 | 865 ± 85 | 36 ± 5 | 18 ± 3 |
| 3 | PTMC-b-PLA | 17 | — | 37 | 164 | 763 ± 135 | 37 ± 5 | 23 ± 4 |
| 4 | PTMC-b-PLA-b-PTMC | 18 | — | 35 | 161 | 521 ± 30 | 24 ± 2 | 249 ± 32 |
| 5 | PLA-b-PTMC-b-PLA | 17 | — | 35 | 165 | 382 ± 61 | 12 ± 4 | 219 ± 44 |
| 6 | PLA-b-PTMC-b-PLA-b-PTMC | 19 | — | 34 | 165 | 471 ± 147 | 27 ± 0 | 208 ± 47 |
| 7 | PTMC-b-PLA-b-PTMC-b-PLA-b-PTMC | 18 | — | 34 | 160 | 334 ± 70 | 21 ± 2 | 176 ± 23 |
| 8 | PLA-b-PTMC-b-PLA-b-PTMC-b-PLA | 19 | — | 34 | 153 | 303 ± 44 | 20 ± 1 | 251 ± 32 |
| 9 | PLA-b-PTMC-b-PLA | 10 | — | 43 | 163 | 545 ± 145 | 41 ± 2 | 18 ± 3 |
| 10 | PLA-b-PTMC-b-PLA | 30 | — | 40 | 161 | 332 ± 48 | 22 ± 4 | 81 ± 11 |
| 11 | PLA-b-PTMC-b-PLA | 39 | −13 | 9 | 157 | 364 ± 64 | 21 ± 4 | 257 ± 13 |
The mechanical properties of the polymers were determined via dynamic mechanical analysis (DMA, Table 2 and Fig. S74–S81†) on multiple samples of each copolymer prepared via a solvent casting method. The PLA homopolymer displayed a Young's modulus of 1733 MPa and an elongation at break value of 11% (Table 2, entry 1). Physical blends of PLA and PTMC show a higher Young's modulus and a lower increase in the elongation at break than the copolymer corresponding to the same weight percentage composition.64 The copolymers display lower Young's modulus values than PLA, consistent with the addition of a soft PTMC fragment,65 and, in most cases, display an order of magnitude improved elongation at break values. The diblock copolymers showed a lower Young's modulus and a minor improvement in the elongation at break of up to 23% (Table 2, entries 2 and 3). As the number of blocks increases to three or more, we observed a decrease in the Young's moduli while the elongation at break values were drastically improved up to 250% (Table 2, entries 4–8). Therefore, increasing the number of blocks while maintaining a consistent monomer composition results in copolymers with improved elasticity. Particularly in the case of the pentablock copolymers, the materials possess low Young's moduli and high elongation at break values while maintaining thermal properties similar to the rest of the block copolymers.
An inverse relationship between Young's modulus and elongation at break values was observed by Guerin et al. upon increasing the percent composition of TMC in their copolymers.19 We also prepared several triblock copolymers with different percent compositions of TMC (Table 1, entries 10–12; Table 2, entries 9–11) to study the effects of varying the TMC concentration in our copolymers. Lowering the TMC percent composition to 10% yielded a brittle material similar to PLA but with a lower Young's modulus than that of the homopolymer. On the other hand, when the TMC composition in the copolymer was increased to ca. 30% and 40% by weight we observed a similar inverse relationship between the Young's modulus and the elongation at break of the materials. Based on these results, a further increase in the PTMC composition would have a negative impact on the Young's modulus of the materials at the expense of an increased elongation at break. The copolymers with increased TMC loadings also show a drastic deviation in the glass transition temperature from the 20% weight PTMC multiblock copolymers. Therefore, multiblock copolymers derived from consistent monomer ratios yield materials with a unique combination of thermal and mechanical properties for various specialty applications.
Finally, to test the applicability of this system under industrially relevant conditions, we carried out some polymerizations under solvent-free conditions via monomer melts. The syntheses of PLA (Fig. S41 and S60†) and PTMC-b-PLA (Fig. S42 and S61†) were carried out at 140 °C in the absence of benzene. Although the isolated polymers displayed unimodal distributions in the SEC traces and narrow dispersities (Fig. S60 and S61†), the amount of TMC incorporated in the copolymer was very small (Fig. S42†). This is likely due to the viscous nature of PLA preventing a thorough mixing of TMC during its sequential addition. Further optimization of the reaction conditions could provide a viable method for the preparation of various multiblock copolymers under solvent-free conditions.
Since the energy difference between the dimeric and the monomeric species was small, the free energy surfaces for the reaction with LA and TMC were thus computed for both the monomer and the dimer (Fig. S87 and S88†) to compare the initiation step. For LA, although the monomer shows a lower activation barrier than the dimer (by 2.7 kcal mol−1) for the alkoxide nucleophilic attack (TSI–II), the energy for the ring opening step (TSII–III) and the overall activation barrier are lower for the dimeric species than for the monomer by 4.2 and 4.4 kcal mol−1, respectively; furthermore, the two zinc centers participate in the process synergistically when the reaction occurs with the dimer. Similarly, for the initiation of TMC, both activation barriers were lower for the dimer (by 3.1 and 1.6 kcal mol−1). These results are again in agreement with the experimental observations discussed above that the dimeric zinc complex facilitates the polymerization.
The copolymerization steps were then considered. Since the insertion of TMC leads to a product that has a similar structure as the step before, each following insertion should be similar to the initiation step, making the homopolymerization and copolymerization possible. However, after the insertion of LA, the resulting product contains a five-membered ring, in which the bond between the Zn center and the carbonyl group cannot be ignored. Thus, the insertions of a second LA or TMC molecule, respectively, after the insertion of the first LA were considered. As shown in Fig. 9, the dimeric species significantly lowers the overall activation barriers, thus making the propagations possible after the insertion of LA. We would like to note that we are treating the results shown in Fig. 9 from a qualitative point of view that allows us to compare the behavior of LA versus TMC. The large number of atoms involved and the simplifications necessary in order to get the respective transition states and intermediates to converge in a reasonable amount of time likely resulted in obtaining energies for the products that are positive with respect to the starting materials.
![]() | ||
| Fig. 9 Comparison of reaction coordinates for propagation catalyzed by a monomeric (top) or dimeric (bottom) form of the zinc complex. | ||
It is interesting to observe that after the insertion of LA, the insertion of another LA is easier than the insertion of TMC. Based on these results, we can envision that although the homopolymerization of TMC is much easier than that of LA, during the copolymerization of LA and TMC in one pot, LA would be consumed first (Fig. S47†).
The preparation of various multiblock copolymers was achieved by a simple step-wise addition of the cyclic ester and carbonate in the presence of the catalyst. The physical, thermal, and mechanical properties of the isolated copolymers were determined using NMR spectroscopy, SEC, DSC, and DMA. In all cases, the block-like structures of the isolated polymers could be observed by NMR spectroscopy and the theoretical molar masses agreed well with the SEC results. Furthermore, a clear trend in the influence of the block structures on the thermal and mechanical properties was observed; with an increasing number of blocks, a decrease in the glass transition temperatures, melting point temperatures, and the Young's modulus was observed. This study shows that multiblock copolymers derived from consistent monomer ratios yield materials with a unique combination of thermal and mechanical properties that may be used for various specialty applications.
To gain further insight into the polymerization mechanism, density functional theory calculations were performed. The DFT calculations indicate that: (1) in solution, the dimeric zinc species is more favored than the monomeric species; (2) the dimeric zinc species has lower overall activation barriers compared to the monomer; (3) both the polymerization of LA and TMC are possible with the dimeric catalyst and the rate of the polymerization of TMC is faster than that of LA; (4) however, after the insertion of LA, the insertion of another LA is easier than the insertion of TMC. However, obtaining an accurate description of the polymerization processes during copolymerization was hindered by the large and complex nature of our system.
:
2) mixture at −35 °C (354.2 mg, 68.5%). Crystals of [(fcP,B)Zn(μ-OCH2Ph)]2 always contain two molecules of solvent per molecule of compound as a mixture of THF and diethyl ether as supported by NMR spectroscopic data. X-ray quality crystals were obtained from a THF/diethyl ether layering at −35 °C. 1H NMR (C6D6, 500 MHz, 298 K): δ (ppm) 2.00 (s, 6H, CH3), 2.47 (s, 6H, CH3), 3.74 (t, 2H, Cp-H), 3.91 (t, 2H, Cp-H), 4.03 (s, 2H, OCH2Ph), 4.13 (q, 2H, Cp-H), 4.32 (t, 2H, Cp-H), 4.88 (br s, 1H, BH), 5.76 (s, 2H, CH), 6.69 (m, 2H, o-Ph), 6.81 (m, 2H, m-Ph), 6.87 (m, 1H, p-Ph), 7.04 (m, 6H, m-Ph, p-Ph), 7.53 (m, 4H, o-Ph). 13C NMR (C6D6, 126 MHz, 298 K): δ (ppm) 13.5 (s, CH3), 14.0 (d, CH3), 69.9 (s, Cp-C), 70.5 (s, OCH2Ph), 72.7 (d, Cp-C), 74.1 (s, Cp-C), 74.3 (d, Cp-C), 75.7 (d, Cp-C), 106.0 (s, CH), 127.3 (s, aromatic), 129.3 (s, aromatic), 134.4 (d, aromatic), 141.0 (d, aromatic), 144.3 (s, aromatic), 147.7 (s, CCH3), 150.2 (s, CCH3). 31P{1H} NMR (C6D6, 121 MHz, 298 K): δ (ppm) −15.5 (s). 11B NMR (C6D6, 161 MHz, 298 K): δ (ppm) −7.2 (br s). Anal. calcd: [(fcP,B)Zn(μ-OCH2Ph)]2·(THF)2 (C86H96B2Fe2N8O2P2Zn2) C, 63.30; H, 5.93; N, 6.87. Found: C, 63.76; H, 5.87; N, 7.01.
Melt polymerizations were carried out in a Schlenk tube equipped with a Teflon screw cap and a stir bar, at 140 °C, with a 600
:
1 monomer to [(fcP,B)Zn(μ-OCH2Ph)]2 ratio.
Footnotes |
| † Electronic supplementary information (ESI) available: NMR spectra, SEC traces, DSC, DMA, X-ray, and DFT calculation data. CCDC 1580591. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04507g |
| ‡ Present address: Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143. |
| This journal is © The Royal Society of Chemistry 2018 |