Open Access Article
Dongamanti Ashok
*a,
Pamula Chiranjeevia,
Aamate Vikas Kumara,
Madderla Sarasijab,
Vagolu Siva Krishnac,
Dharmarajan Sriramc and
Sridhar Balasubramaniand
aGreen and Medicinal Chemistry Lab, Department of Chemistry, Osmania University, Hyderabad-500 007, Telangana State, India. E-mail: ashokdou@gmail.com
bDepartment of Chemistry, Satavahana University, Karimnagar-505001, Telangana State, India
cDepartment of Pharmacy, Birla Institute of Technology & Science – Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad-500 078, Telangana State, India
dX-ray Crystallography Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
First published on 9th May 2018
A facile and convenient approach has been designed for the synthesis of novel prototypes that possess the advantage of the two pharmacophores of chromene and 1,2,3-triazole in a single molecular backbone, were evaluated against Mycobacterium tuberculosis H37Rv strain. The new analogues 1,2,3-triazole-fused spirochromenes were accomplished in four step synthetic strategy utilizing click chemistry ([3 + 2] Huisgen cycloaddition) in the ultimate step. The synthesized compounds were established based on the spectral data and X-ray crystal structure for 7a. Among the compounds tested against Mycobacterium tuberculosis H37Rv strain, some products exhibited potent antimycobacterial activity with minimum inhibitory concentration (MIC) values ranging from 1.56 to 6.25 μg mL−1. Compounds exhibiting good in vitro potency in the MTB MIC assay were further examined for cytotoxicity in a RAW 264.7 cells. Compounds 7a, 7d, 7i (MIC: 1.56 μg mL−1) and 7k, 7m (MIC: 3.125 μg mL−1) exhibited promising hits.
Chromene (benzopyran), an important class of benzo-fused oxaheterocycles is an integral part of many bioactive compounds exhibiting a wide range of biological properties including anti-HIV,8–10 anticancer,11,12 antimicrobial,13,14 antitumor,15 antiviral,16 anti-inflammatory17 and antioxidant18 activities. Among naturally occurring chromene heterocycles, molecules like dehydrolupinifolinol (I), eriosemaone A (II), karanjachromene (III), (+)-calanolide A (IV) and benzofuro-chromene (V) were reported as anti-tubercular agents (Fig. 1).19–22 On the other hand, synthesis of triazole-fused compounds approached through click reaction continues to fascinate the attention of chemists, in a bid to identify molecules with enhanced pharmacological properties.23 Moreover, compounds consisting 1,2,3-triazole ring fused with various carbocyclic moieties exhibited remarkable biological activities, e.g., 1,2,3-triazolo[1,5-a]quinoxaline possess good affinity toward benzodiazepine and adenosine receptors24,25 and the morpholine-fused triazole is efficient γ-secretase modulator (GSM) for the treatment of Alzheimer's disease.26 Additionally, 1,2,3-triazoles conjugated with different sorts of heterocyclic moieties were reported to exhibit potent anti-tubercular activity (VI–XI) (Fig. 2).27–30
Therefore the triazole-fused structural motifs became increasingly common in pharmaceutical targets and in a wide array of bioactive molecules such as chemotherapeutic A,31 antibacterial B32 and cardiovascular C33 agents (Fig. 3). Inspired by the frequent occurrence of 1,2,3-triazole or chromene framework in various biologically active anti-tubercular agents and in continuation to our ongoing efforts34,35 in exploiting the biological significance of 1,2,3-triazole nuclei fused with various carbocyclic frameworks, we anticipated that integration of these two frameworks in a single molecule may provide truly effective lead structures (Fig. 4) and they are further evaluated against the Mycobacterium tuberculosis H37Rv strain. To the best of our knowledge, synthesis and antimycobacterial activities of these 1,2,3-triazole-fused spirochromene conjugates are unprecedented.
The synthesized 1,2,3-triazole-fused spirochromene scaffolds were characterized by 1H NMR, 13C NMR, mass and FTIR spectral analysis; X-ray diffractometry confirmed the structure of compound 7a (CCDC 1820092†)44 as shown in Fig. 6.
![]() | ||
| Fig. 6 A view of KA357, showing the atom-labelling scheme of compound 7a. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary radii. | ||
| Compounds | MIC (μg mL−1) | MIC (μM) | Cytotoxicity in % inhibition at 50 μg mL−1 |
|---|---|---|---|
| a * Represent more active compounds; MIC: minimum inhibitory concentration (the lowest concentration that inhibited the bacterial growth). MIC values are interpreted as an average of duplicates. ND = not determined. | |||
| 7a* | 1.56 | 4.74 | 30.23 |
| 7b | >25 | 75.80 | ND |
| 7c | 12.5 | 34.43 | ND |
| 7d* | 1.56 | 4.34 | 33.14 |
| 7e | >25 | 75.80 | ND |
| 7f | 6.25 | 17.90 | 21.41 |
| 7g | 25 | 68.87 | ND |
| 7h | 25 | 65.27 | ND |
| 7i* | 1.56 | 4.11 | 29.36 |
| 7j | 12.5 | 34.43 | ND |
| 7k* | 3.125 | 8.60 | 24.90 |
| 7l | >25 | 68.96 | ND |
| 7m* | 3.125 | 7.87 | 24.76 |
| 7n | 6.25 | 15.90 | 22.64 |
| 7o | 25 | 66.31 | ND |
| Isoniazid | 0.055 | 0.437 | ND |
| Rifampicin | 0.411 | 0.50 | ND |
| Ethambutol | 1.56 | 7.64 | ND |
As observed from Table 1, the tested compounds showed antimycobacterial activity with MIC values between 4.11 and 75.80 μM. Out of the various compounds tested, compounds 7a, 7c, 7d, 7f, 7i, 7j, 7k, 7m and 7n with MIC values varying from 4.11 to 50.40 μM possess more inhibitory efficiency compared to that of standard pyrazinamide (MIC = 50.77 μM). Compounds 7a, 7d and 7i were found to possess excellent potency i.e. 4.74 μM, 4.34 μM and 4.11 μM respectively, while compounds 7k (8.6 μM) and 7m (7.67 μM) were close as compared to first line anti-tubercular drug ethambutol (MIC = 7.64 μM). However, all the compounds exhibited lower inhibitory efficiency compared to isoniazid (MIC = 0.437 μM) and rifampicin (MIC = 0.5 μM).
:
2). The crude product was purified by column chromatography on silica gel, eluting with PE/acetone (10
:
1 to 4
:
1), to afford the desired products 7a–o as white solids.
:
20; 100 μL was used as inoculum. Each drug stock solution was thawed and diluted in 7H9-S at four-fold the final highest concentration tested. Serial two-fold dilutions of each drug were prepared directly in a sterile 96-well microtiter plate using 100 μL 7H9-S. A growth control containing no antibiotic and a sterile control were also prepared on each plate. Sterile water was added to all perimetre wells to avoid evaporation during the incubation. The plate was covered, sealed in plastic bags and incubated at 37 °C in normal atmosphere. After 7 days incubation, 30 μL of alamar blue solution was added to each well, and the plate was re-incubated overnight. A change in colour from blue (oxidised state) to pink (reduced) indicated the growth of bacteria, and the MIC was defined as the lowest concentration of drug that prevented this change in colour.45*Standards INH & amp; RIF (0.437 & amp; 0.5 μM).
247 reflections measured (4.42° ≤ 2Θ ≤ 61.14°), 5166 unique (Rint = 0.0288, Rsigma = 0.0248) which were used in all calculations. The final R1 was 0.0560 (I > 2σ(I)) and wR2 was 0.1638 (all data). CCDC 1820092 contains supplementary crystallographic data for the structure.†
:
1). IR (KBr): 2932, 2891, 1689, 1616, 1484 1285, 1136, 1090 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.65 (d, J = 2.0 Hz, 1H), 7.32–7.28 (d, J = 8.5, 2.0 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 4.01–3.92 (m, 4H), 2.69 (s, 2H), 2.30 (s, 3H), 2.15–2.07 (m, 2H), 1.98 (td, J = 13.1, 4.3 Hz, 2H), 1.72 (td, J = 13.1, 4.3 Hz, 2H), 1.63–1.56 (m, 2H). 13C NMR (100 MHz, CDCl3): δ = 192.5, 157.3, 137.3, 130.4, 126.2, 120.4, 118.1, 108.0, 78.5, 64.4, 64.3, 48.0, 32.1, 30.0, 20.4. MS (ESI) m/z (%) = 289 (100) [M + H]+. Anal. calcd for C17H20O4: C, 70.81; H, 6.99. Found: C, 70.83; H, 6.97.
:
1). IR (KBr): 2947, 2884, 1686, 1602, 1467, 1259, 1150, 1091 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.82 (d, J = 2.7 Hz, 1H), 7.42 (dd, J = 8.8, 2.7 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 4.01–3.92 (m, 4H), 2.71 (s, 2H), 2.15–2.06 (m, 2H), 1.96 (td, J = 13.1, 4.2 Hz, 2H), 1.74 (td, J = 13.1, 4.2 Hz, 2H), 1.63–1.62 (m, 1H), 1.60–1.59 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 191.1, 157.8, 136.1, 126.5, 126.0, 121.5, 120.0, 107.8, 79.2, 64.5, 64.3, 47.6, 32.1, 29.9. MS (ESI) m/z (%) = 309 (100) [M + H]+. Anal. calcd for C16H17ClO4: C, 62.24; H, 5.55. Found: C, 62.28; H, 5.51.
:
1). IR (KBr): 2926, 2883, 1685, 1606, 1443, 1251, 1168, 1086 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.81 (s, 1H), 6.88 (s, 1H), 4.01–3.91 (m, 4H), 2.68 (s, 2H), 2.37 (s, 3H), 2.10 (dd, J = 15.7, 2.4 Hz, 2H), 1.96 (td, J = 13.1, 4.2 Hz, 2H), 1.73 (td, J = 13.1, 4.2 Hz, 2H), 1.64–1.60 (m, 1H), 1.58–1.55 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 190.9, 157.6, 145.2, 127.2, 126.3, 120.5, 119.8, 107.9, 79.1, 64.5, 64.3, 47.6, 32.1, 29.9, 20.8. MS (ESI) m/z (%) = 323 (100) [M + H]+. Anal. calcd for C17H19ClO4: C, 63.26; H, 5.93. Found: C, 63.28; H, 5.91.
:
1). IR (KBr): 3253, 2930, 2858, 1612, 1441, 1248, 1140, 1090 cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 7.20 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 8.3, 2.0 Hz, 1H), 6.63 (d, J = 8.3 Hz, 1H), 5.27 (d, J = 6.3 Hz, 1H), 4.67–4.58 (m, 1H), 3.92–3.81 (m, 4H), 2.21 (s, 3H), 2.02 (dd, J = 13.4, 6.3 Hz, 1H), 1.89–1.44 (m, 9H). 13C NMR (100 MHz, CDCl3): δ = 150.5, 130.1, 129.8, 128.0, 124.4, 117.2, 108.6, 74.4, 64.3, 64.2, 63.5, 41.9, 34.2, 31.4, 30.0, 20.6. MS (ESI) m/z (%) = 313 (100) [M + Na]+. Anal. calcd for C17H22O4: C, 70.32; H, 7.64. Found: C, 70.35; H, 7.61.
:
1). IR (KBr): 3254, 2934, 2886, 1608, 1475, 1241, 1173, 1092 cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 7.39 (d, J = 2.7 Hz, 1H), 7.15 (dd, J = 8.7, 2.7 Hz, 1H), 6.79 (d, J = 8.7 Hz, 1H), 5.50 (d, J = 6.2 Hz, 1H), 4.62–4.70 (m, 1H), 3.92–3.81 (m, 4H), 2.06 (dd, J = 13.5, 6.3 Hz, 1H), 1.89–1.45 (m, 9H). 13C NMR (100 MHz, CDCl3): δ = 151.4, 129.3, 127.6, 126.2, 125.3, 118.7, 108.4, 75.2, 64.4, 64.3, 63.1, 41.5, 34.3, 31.3, 30.0. MS (ESI) m/z (%) = 333 (100) [M + Na]+. Anal. calcd for C16H19ClO4: C, 61.84; H, 6.16. Found: C, 61.89; H, 6.11.
:
1). IR (KBr): 3254, 2928, 2861, 1616, 1444, 1252, 1168, 1091 cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 7.36 (s, 1H), 6.77 (s, 1H), 5.43 (d, J = 6.1 Hz, 1H), 4.67–4.59 (m, 1H), 3.90–3.84 (m, 4H), 2.23 (s, 3H), 2.04 (dd, J = 13.5, 6.2 Hz, 1H), 1.90–1.45 (m, 9H). 13C NMR (100 MHz, CDCl3): δ = 151.2, 137.2, 127.9, 125.7, 123.8, 119.4, 108.4, 75.0, 64.4, 64.3, 63.0, 41.7, 34.2, 31.3, 30.0, 19.9. MS (ESI) m/z (%) = 347 (100) [M + Na]+. Anal. calcd for C17H21ClO4: C, 62.86; H, 6.52. Found: C, 62.84; H, 6.54.
:
1). IR (KBr): 3024, 2938, 2868, 1716, 1635, 1485, 1241, 1138 cm−1. 1H NMR (400 MHz, CDCl3): δ = 6.97 (dd, J = 8.1, 1.7 Hz, 1H), 6.85 (d, J = 1.7 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 6.42 (d, J = 9.7 Hz, 1H), 5.58 (d, J = 9.7 Hz, 1H), 2.90 (td, J = 14.3, 6.3 Hz, 2H), 2.47–2.36 (m, 2H), 2.32–2.28 (m, 1H), 2.27 (s, 3H), 2.28–2.24 (m, 1H), 1.85 (td, J = 13.8, 5.1 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 210.8, 149.9, 130.8, 129.8, 128.5, 127.1, 124.4, 121.6, 116.1, 74.8, 36.5, 35.3, 20.5. MS (ESI) m/z (%) = 229 (100) [M + H]+. Anal. calcd for C15H16O2: C, 78.92; H, 7.06; found: C, 78.97; H, 7.01.
:
1). IR (KBr): 2944, 2863, 1708, 1630, 1475, 1246, 1199 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.11 (dd, J = 8.5, 2.5 Hz, 1H), 7.01 (d, J = 2.5 Hz, 1H), 6.81 (d, J = 8.5 Hz, 1H), 6.39 (d, J = 9.8 Hz, 1H), 5.65 (d, J = 9.8 Hz, 1H), 2.81 (td, J = 14.2, 6.3 Hz, 2H), 2.47–2.36 (m, 2H), 2.34–2.25 (m, 2H), 1.87 (td, J = 13.8, 5.1 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 210.2, 150.6, 129.7, 129.0, 126.3, 123.4, 123.1, 117.7, 75.4, 36.4, 35.3. MS (ESI) m/z (%) = 249 (100) [M + H]+. Anal. calcd for C14H13ClO2: C, 67.61; H, 5.27. Found: C, 67.64; H, 5.24.
:
1). IR (KBr): 3021, 2925, 2858, 1720, 1634, 1486, 1226, 1147 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.01 (s, 1H), 6.77 (s, 1H), 6.38 (d, J = 9.8 Hz, 1H), 5.59 (d, J = 9.8 Hz, 1H), 2.81(td, J = 14.2, 6.3 Hz, 2H), 2.44–2.36 (m, 2H), 2.32 (s, 3H), 2.31–2.25 (m, 2H), 1.86 (td, J = 13.8, 5.1 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 210.5, 150.5, 137.1, 128.7, 126.5, 126.4, 123.2, 120.9, 118.7, 75.2, 36.4, 35.3, 20.1. MS (ESI) m/z (%) = 262 (100) [M + H]+. Anal. calcd for C15H15ClO2: C, 68.57; H, 5.75. Found: C, 68.54; H, 5.78.
:
2). IR (KBr): 3021, 2925, 2858, 1634, 1486, 1226, 1147 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.65–7.44 (m, 5H), 6.92 (dd, J = 8.1, 1.7 Hz, 1H), 6.86 (d, J = 1.7 Hz, 1H), 6.66 (d, J = 8.1 Hz, 1H), 6.47 (d, J = 9.7 Hz, 1H), 5.69 (d, J = 9.7 Hz, 1H), 3.42 (d, J = 16.3 Hz, 1H), 3.08–2.92 (m, 2H), 2.81–2.73 (m, 1H), 2.39–2.30 (m, 1H), 2.26 (s, 3H), 1.97–1.86 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 149.9, 141.7, 136.9, 130.9, 130.7, 129.9, 129.5, 128.7, 128.1, 127.1, 124.6, 123.0, 121.2, 116.3, 75.9, 33.6, 32.3, 20.5, 18.0. MS (ESI) m/z (%) = 330 (100) [M + H]+. Anal. calcd for C21H19N3O: C, 76.57; H, 5.81; N, 12.76. Found: C, 76.61; H, 5.82; N, 12.71.
:
2). IR (KBr): 3036, 2923, 2855, 1645, 1491, 1225, 1150 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.48 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 8.1 Hz, 1H), 6.85 (s, 1H), 6.65 (d, J = 8.1 Hz, 1H), 6.46 (d, J = 9.7 Hz, 1H), 5.68 (d, J = 9.7 Hz, 1H), 3.40 (d, J = 16.5 Hz, 1H), 3.04–2.90 (m, 2H), 2.78–2.68 (m, 1H), 2.44 (s, 3H), 2.37–2.28 (m, 1H), 2.26 (s, 3H), 1.96–1.86 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 149.9, 141.5, 138.8, 134.4, 130.9, 130.6, 130.1, 129.9, 128.1, 127.1, 124.5, 122.9, 121.2, 116.3, 75.9, 33.6, 32.2, 21.2, 20.5, 17.9. MS (ESI) m/z (%) = 344.30 (100) [M + H]+. Anal. calcd for C22H21N3O: C, 76.94; H, 6.16; N, 12.24. Found: C, 76.98; H, 6.15; N, 12.27.
:
2). IR (KBr): 3031, 2938, 2866, 1595, 1496, 1223, 1147 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.62–7.48 (m, 4H), 6.95–6.89 (d, J = 8.1 Hz, 1H), 6.85 (s, 1H), 6.64 (d, J = 8.1 Hz, 1H), 6.47 (d, J = 9.7 Hz, 1H), 5.68 (d, J = 9.7 Hz, 1H), 3.41 (d, J = 16.5 Hz, 1H), 3.08–2.89 (m, 2H), 2.79–2.70 (m, 1H), 2.40–2.31 (m, 1H), 2.44 (s, 3H), 1.96–1.85 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 149.9, 141.9, 135.4, 134.6, 130.9, 130.7, 130.0, 129.8, 128.0, 127.1, 124.6, 124.1, 121.1, 116.3, 75.7, 33.5, 32.2, 20.5, 18.0. MS (ESI) m/z (%) = 364 (100) [M + H]+. Anal. calcd for C21H18ClN3O: C, 69.32; H, 4.99; N, 11.55. Found: C, 69.30; H, 4.97; N, 11.59.
:
2). IR (KBr): 3015, 2924, 2854, 1590, 1482, 1252, 1149 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.50 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 8.1 Hz, 1H), 6.85 (s, 1H), 6.65 (d, J = 8.1 Hz, 1H), 6.46 (d, J = 9.7 Hz, 1H), 5.68 (d, J = 9.7 Hz, 1H), 3.88 (s, 3H), 3.40 (d, J = 16.4 Hz, 1H), 3.01–2.91 (m, 2H), 2.75–2.66 (m, 1H), 2.36–2.29 (m, 1H), 2.26 (s, 3H), 1.96–1.85 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 159.8, 149.9, 141.4, 131.0, 130.6, 129.9, 129.9, 128.1, 127.1, 124.6, 124.5, 121.2, 116.3, 114.6, 75.9, 55.6, 33.7, 32.2, 20.5, 17.8. MS (ESI) m/z (%) = 360 (100) [M + H]+. Anal. calcd for C22H21N3O2: C, 73.52; H, 5.89; N, 11.69. Found: C, 73.56; H, 5.90; N, 11.64.
:
2). IR (KBr): 3025, 2937, 2855, 1590, 1488, 1221, 1111 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.40–7.30 (m, 3H), 7.23–7.18 (m, 2H), 6.88 (dd, J = 8.2, 1.7 Hz, 1H), 6.81 (d, J = 1.8 Hz, 1H), 6.51 (d, J = 8.1 Hz, 1H), 6.41 (d, J = 9.7 Hz, 1H), 5.60 (d, J = 9.7 Hz, 1H), 5.59 (d, J = 2.4 Hz, 2H), 3.31 (d, J = 16.4 Hz, 1H), 2.87 (d, J = 16.4 Hz, 1H), 2.67–2.54 (m, 1H), 2.49–2.39 (m, 1H), 2.24 (s, 3H), 2.20 (m, 1H), 1.89–1.78 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 149.8, 141.5, 134.8, 131.0, 130.6, 129.8, 130.0, 128.4, 128.0, 127.4, 127.0, 124.4, 121.2, 116.2, 75.9, 52.0, 33.6, 31.8, 20.5, 16.5. MS (ESI) m/z (%) = 344 (100) [M + H]+. Anal. calcd for C22H21N3O: C, 76.94; H, 6.16; N, 12.24. Found: C, 76.89; H, 6.18; N, 12.27.
:
2). IR (KBr): 3026, 2929, 2845, 1588, 1463, 1206, 1109 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.64–7.45 (m, 5H), 7.07 (dd, J = 8.5, 2.5 Hz, 1H), 7.02 (d, J = 2.5 Hz, 1H), 6.69 (d, J = 8.5 Hz, 1H), 6.45 (d, J = 9.8 Hz, 1H), 5.76 (d, J = 9.8 Hz, 1H), 3.41 (d, J = 16.7 Hz, 1H), 3.09–2.94 (m, 2H), 2.84–2.75 (m, 1H), 2.39–2.31 (m, 1H), 1.99–1.89 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 150.6, 141.3, 136.8, 130.8, 129.6, 129.3, 129.1, 128.8, 126.2, 126.2, 123.5, 123.0, 122.7, 117.8, 76.4, 33.6, 32.4, 18.0. MS (ESI) m/z (%) = 350 (100) [M + H]+. Anal. calcd for C20H16ClN3O: C, 68.67; H, 4.61; N, 12.01. Found: C, 68.65; H, 4.60; N, 12.04.
:
2). IR (KBr): 3033, 2931, 2847, 1591, 1477, 1209, 1117 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.50–7.45 (m, 2H), 7.36, 7.31 (m, 2H), 7.06 (dd, J = 8.5, 2.5 Hz, 1H), 7.02 (d, J = 2.5 Hz, 1H), 6.69 (d, J = 8.5 Hz, 1H), 6.44 (d, J = 9.8 Hz, 1H), 5.75 (d, J = 9.8 Hz, 1H), 3.40 (d, J = 17.0 Hz, 1H), 3.05–2.93 (m, 2H), 2.80–2.72 (m, 1H), 2.44 (s, 3H), 2.37–2.30 (m, 1H), 1.93 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 150.7, 141.1, 139.0, 134.4, 130.7, 130.1, 129.3, 129.1, 126.2, 123.5, 122.9, 122.7, 117.8, 76.5, 33.6, 32.4, 21.2, 17.9. MS (ESI) m/z (%) = 364 (100) [M + H]+. Anal. calcd for C21H18ClN3O: C, 69.32; H, 4.99; Cl, 9.74; N, 11.55. Found: C, 69.30; H, 4.97; Cl, 9.74; N, 11.59.
:
2). IR (KBr): 3016, 2955, 2847, 1589, 1486, 1219, 1102 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.60–7.49 (m, 4H), 7.06 (dd, J = 8.5, 2.6 Hz, 1H), 7.02 (d, J = 2.6 Hz, 1H), 6.68 (d, J = 8.5 Hz, 1H), 6.45 (d, J = 9.8 Hz, 1H), 5.75 (d, J = 9.8 Hz, 1H), 3.41 (d, J = 16.6 Hz, 1H), 3.07–2.90 (m, 2H), 2.82–2.73 (m, 1H), 2.40–2.31 (m, 1H), 1.98–1.88 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 150.6, 141.6, 135.3, 134.7, 130.8, 129.8, 129.1, 126.3, 124.1, 123.6, 122.6, 117.8, 76.3, 33.5, 32.3, 18.0. MS (ESI) m/z (%) = 384 (100) [M + H]+. Anal. calcd for C20H15Cl2N3O: C, 62.51; H, 3.93; N, 10.94. Found: C, 62.55; H, 3.92; N, 10.91.
:
2). IR (KBr): 3012, 2942, 2841, 1604, 1476, 1219, 1114 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.54–7.46 (m, 2H), 7.09–7.00 (m, 4H), 6.68 (d, J = 8.5 Hz, 1H), 6.44 (d, J = 9.8 Hz, 1H), 5.76 (d, J = 9.8 Hz, 1H), 3.88 (s, 3H), 3.40 (d, J = 16.1 Hz, 1H), 3.02–2.90 (m, 2H), 2.79–2.68 (m, 1H), 2.37–2.29 (m, 1H), 1.98–1.88 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 159.9, 150.7, 141.0, 130.9, 129.3, 129.1, 126.2, 124.6, 123.5, 117.8, 114.7, 76.5, 55.6, 33.6, 32.4, 17.7. MS (ESI) m/z (%) = 380 (100) [M + H]+. Anal. calcd for C21H18ClN3O2: C, 66.40; H, 4.78; N, 11.06. Found: C, 66.45; H, 4.77; N, 11.10.
:
2). IR (KBr): 3040, 2941, 2865, 1588, 1482, 1208, 1112 cm−1. 1H NMR (400 MHz, CDCl3): δ = 1H NMR (400 MHz, CDCl3) δ 7.40–7.31 (m, 3H), 7.23–7.17 (m, 2H), 7.04–7.00 (dd, J = 8.5, 2.5 Hz, 1H), 6.99–6.97 (d, J = 2.5 Hz, 1H), 6.54 (d, J = 8.5 Hz, 1H), 6.39 (d, J = 9.8 Hz, 1H), 5.67 (d, J = 9.8 Hz, 1H), 5.49 (d, J = 3.1 Hz, 2H), 3.29 (d, J = 16.5 Hz, 1H), 2.88 (d, J = 16.5 Hz, 1H), 2.66–2.54 (m, 1H), 2.52–2.42 (m, 1H), 2.26–2.17 (m, 1H), 1.90–1.81 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 150.6, 141.2, 134.7, 130.9, 129.2, 129.0, 128.4, 127.4, 126.1, 126.1, 123.4, 122.7, 117.7, 76.5, 52.1, 33.5, 31.9, 16.5. MS (ESI) m/z (%) = 364 (100) [M + H]+. Anal. calcd for C21H18ClN3O: C, 69.32; H, 4.99; N, 11.55; O, 4.40. Found: C, 69.38; H, 4.97; N, 11.59.
:
2). IR (KBr): 3076, 2921, 2849, 1600, 1494, 1251, 1158 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.64–7.45 (m, 5H), 7.01 (s, 1H), 6.65 (s, 1H), 6.43 (d, J = 9.8 Hz, 1H), 5.70 (d, J = 9.8 Hz, 1H), 3.40 (d, J = 16.5 Hz, 1H), 3.08–2.91 (m, 2H), 2.83–2.75 (m, 1H), 2.39–2.30 (m, 1H), 2.28 (s, 3H), 1.97–1.87 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 150.5, 141.4, 137.2, 136.8, 130.8, 129.6, 128.8, 128.3, 126.5, 126.3, 123.4, 123.0, 120.5, 118.9, 76.3, 33.5, 32.3, 20.1, 18.0. MS (ESI) m/z (%) = 364 (100) [M + H]+. Anal. calcd for C21H18ClN3O: C, 69.32; H, 4.99; N, 11.55. Found: C, 69.35; H, 4.98; N, 11.57.
:
2). IR (KBr): 3081, 2926, 2864, 1605, 1488, 1256, 1158 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.51–7.46 (m, 2H), 7.31–7.36 (m, 2H), 7.01 (s, 1H), 6.65 (s, 1H), 6.42 (d, J = 9.8 Hz, 1H), 5.69 (d, J = 9.8 Hz, 1H), 3.39 (d, J = 16.6 Hz, 1H), 3.04–2.91 (m, 2H), 2.80–2.72 (m, 1H), 2.44 (s, 3H), 2.37–2.29 (m, 1H), 2.28 (s, 3H), 1.97–1.87 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 150.5, 141.3, 138.9, 137.1, 134.4, 130.8, 130.1, 128.3, 126.4, 126.3, 123.4, 122.9, 120.5, 118.9, 76.3, 33.6, 32.3, 21.2, 20.1, 17.9. MS (ESI) m/z (%) = 378 (100) [M + H]+. Anal. calcd for C22H20ClN3O: C, 69.93; H, 5.33; N, 11.12. Found: C, 69.97; H, 5.35; N, 11.06.
:
2). IR (KBr): 3089, 2922, 2848, 1606, 1494, 1257, 1156 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.60–7.49 (m, 4H), 7.01 (s, 1H), 6.64 (s, 1H), 6.44 (d, J = 9.8 Hz, 1H), 5.69 (d, J = 9.8 Hz, 1H), 3.40 (d, J = 16.6 Hz, 1H), 3.07–2.89 (m, 2H), 2.82–2.73 (m, 1H), 2.39–2.32 (m, 1H), 2.28 (s, 3H), 1.96–1.87 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 150.4, 141.7, 137.2, 135.3, 134.7, 130.8, 129.8, 128.2, 126.5, 126.3, 124.1, 123.5, 120.5, 118.8, 76.1, 33.4, 32.3, 20.1, 18.0. MS (ESI) m/z (%) = 398 (100) [M + H]+. Anal. calcd for C21H17Cl2N3O: C, 63.33; H, 4.30; N, 10.55. Found: C, 63.31; H, 4.29; N, 10.58.
:
2). IR (KBr): 3058, 2926, 2844, 1609, 1445, 1256, 1159 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.55–7.47 (m, 2H), 7.07–6.99 (m, 3H), 6.64 (s, 1H), 6.43 (d, J = 9.8 Hz, 1H), 5.70 (d, J = 9.8 Hz, 1H), 3.88 (s, 3H), 3.39 (d, J = 16.6 Hz, 1H), 3.01–2.90 (m, 2H), 2.78–2.68 (m, 1H), 2.37–2.28 (m, 1H), 2.28 (s, 3H), 1.96–1.87 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 159.8, 150.5, 141.1, 137.1, 130.9, 129.9, 128.3, 126.4, 126.3, 124.6, 123.4, 120.5, 118.9, 114.7, 76.3, 55.6, 33.6, 32.3, 20.1, 17.7. MS (ESI) m/z (%) = 394 (100) [M + H]+. Anal. calcd for C22H20ClN3O2: C, 67.09; H, 5.12; N, 10.67. Found: C, 67.12; H, 5.13; N, 10.71.
:
2). IR (KBr): 3053, 2924, 2851, 1602, 1490, 1252, 1156 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.41–7.32 (m, 3H), 7.23–7.18 (m, 2H), 6.97 (s, 1H), 6.49 (s, 1H), 6.37 (d, J = 9.8 Hz, 1H), 5.61 (d, J = 9.8 Hz, 1H), 5.49 (d, J = 6.0 Hz, 2H), 3.29 (d, J = 16.4 Hz, 1H), 2.86 (d, J = 16.4 Hz, 1H), 2.67–2.56 (m, 1H), 2.50–2.41 (m, 1H), 2.24 (s, 3H), 2.17–2.34 (m, 1H), 1.89–1.79 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 150.4, 141.3, 137.0, 134.8, 130.9, 129.0, 128.4, 128.2, 127.5, 126.4, 126.2, 123.3, 120.5, 118.8, 76.3, 52.1, 33.5, 31.9, 20.1, 16.5. MS (ESI) m/z (%) = 378 (100) [M + H]+. Anal. calcd for C22H20ClN3O: C, 69.93; H, 5.33; N, 11.12. Found: C, 69.99; H, 5.30; N, 11.09.Footnote |
| † Electronic supplementary information (ESI) available. CCDC 1820092. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8ra03197e |
| This journal is © The Royal Society of Chemistry 2018 |