Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

This investigation reports on the synthesis of a new class of ionic liquid crosslinked shape-memory polyurethane (PU-IL) based on polycaprolactone diol and 4,4′-methylenebis(phenyl isocyanate) (MDI), which can overcome the major drawbacks of conventional shape-memory polyurethanes. In this case, the ionic liquid crosslinker in PU-IL exhibited not only a higher shape-recovery ratio (98%), but also showed excellent shape-fixity (98%). In the second cycle of the cyclic tensile test, PU-IL showed almost complete shape recovery while maintaining excellent shape fixity. The higher shape-fixity value in PU-IL was also supported by its higher crystallization and melting enthalpy, as evidenced by DSC analysis. The properties of this PU-IL were compared with those of conventional linear PU having 1,4 butanediol (BDO) as a chain extender as well as of non-ionic crosslinked PU using trimethylolpropane (TMP). Ionic liquid as a crosslinker reduced the glass transition temperature (Tg), whereas the non-ionic crosslinker increased the Tg. Interestingly, the soft segment crystallinity as well as melting enthalpy of PU-IL is higher than that of PU-BDO, whereas no melting or crystallization peak was observed in the DSC thermograms of PU-TMP. The DSC results were supported by DMA analysis. The higher Tg and the absence of a soft domain melting transition indicated complete intermixing of hard and soft phases in PU-TMP, but the ionic interaction in PU-IL restricted this. Inter-domain mixing in PU-TMP was also supported by the absence of a scattering peak in SAXS analysis. FT-IR spectroscopy showed stronger hydrogen bonding in PU-BDO followed by PU-TMP and PU-IL.

Graphical abstract: Polyurethane with an ionic liquid crosslinker: a new class of super shape memory-like polymers

Page: ^ Top