Issue 48, 2018

Remote homoepitaxy of ZnO microrods across graphene layers

Abstract

Two-dimensional atomic layered materials (2d-ALMs) are emerging candidates for use as epitaxial seed substrates for transferrable epilayers. However, the micrometer-sized domains of 2d-ALMs preclude their practical use in epitaxy because they cause crystallographically in-plane disordering of the overlayer. Ultrathin graphene can penetrate the electric dipole momentum from an underlying crystal layer to the graphene surface, which then drives it to crystallize the overlayer during the initial growth stage, thus resulting in substantial energy saving. This study demonstrates the remote homoepitaxy of ZnO microrods (MRs) on ZnO substrates across graphene layers via a hydrothermal method. Despite the presence of poly-domain graphene in between the ZnO substrate and ZnO MRs, the MRs were epitaxially grown on a- and c-plane ZnO substrates, whose in-plane alignments were homogeneous within the wafer's size. Transmission electron microscopy revealed a homoepitaxial relationship between the overlayer MRs and the substrate. Density-functional theory calculations suggested that the charge redistribution occurring near graphene induces the electric dipole formation, so the attracted adatoms led to the formation of the remote homoepitaxial overlayer. Due to a strong potential field caused by long-range charge transfer given from the substrate, even the use of bi-layer and tri-layer graphene resulted in remote homoepitaxial ZnO MRs. The effects of substrate crystal planes were also theoretically and empirically investigated. The ability of graphene, which can be released from the mother substrate without covalent bonds, was utilized to transfer the overlayer MR arrays. This method opens a way for producing well aligned, transferrable epitaxial nano/microstructure arrays while regenerating the substrate for cost-saving device manufacturing.

Graphical abstract: Remote homoepitaxy of ZnO microrods across graphene layers

Supplementary files

Article information

Article type
Paper
Submitted
05 Oct 2018
Accepted
17 Nov 2018
First published
21 Nov 2018

Nanoscale, 2018,10, 22970-22980

Author version available

Remote homoepitaxy of ZnO microrods across graphene layers

J. Jeong, K. Min, D. H. Shin, W. S. Yang, J. Yoo, S. W. Lee, S. Hong and Y. J. Hong, Nanoscale, 2018, 10, 22970 DOI: 10.1039/C8NR08084D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements