Issue 36, 2018

Interaction of nanodiamonds with bacteria

Abstract

Nanocarbons come in many forms and among their applications is the engineering of biocompatible and antibacterial materials. Studies have shown that diamond nanoparticles might have the interesting combination of both properties: they are highly biocompatible, while surprisingly reducing bacterial viability or growth at the same time. In this article, we consider for the first time the interaction of milled HPHT nanodiamonds with bacteria. These nanoparticles are capable of hosting nitrogen-vacancy (NV) centers, which provide stable fluorescence with potential use in sensing applications. An initial study was performed to assess the interaction of partially oxidized monocrystalline nanodiamonds with Gram positive S. aureus ATCC 12600 and Gram negative E. coli ATCC 8739. It was shown that for S. aureus ATCC 12600, the presence of these nanodiamonds leads to a sharp reduction of colony forming ability under optimal conditions. A different effect was observed on Gram negative E. coli ATCC 8739, where no significant adverse effects of ND presence was observed. The mode of interaction was further studied by electron microscopy and confocal microscopy. The effects of NDs on S. aureus viability were found to depend on many factors, including the concentration and size of nanoparticles, the suspension medium and incubation time.

Graphical abstract: Interaction of nanodiamonds with bacteria

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2018
Accepted
28 Aug 2018
First published
28 Aug 2018

Nanoscale, 2018,10, 17117-17124

Interaction of nanodiamonds with bacteria

S. Y. Ong, R. J. J. van Harmelen, N. Norouzi, F. Offens, I. M. Venema, M. B. Habibi Najafi and R. Schirhagl, Nanoscale, 2018, 10, 17117 DOI: 10.1039/C8NR05183F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements