Issue 20, 2018

Ball-milling synthesized hydrotalcite supported Cu–Mn mixed oxide under solvent-free conditions: an active catalyst for aerobic oxidative synthesis of 2-acylbenzothiazoles and quinoxalines

Abstract

A rapid solvent-free ball-milling method was developed to prepare a hydrophobic hydrotalcite supported Cu–Mn mixed oxide catalyst (Cu–Mn/HT). The mechanochemically prepared catalyst exhibited high catalytic activity and recyclability towards the aerobic synthesis of 2-acylbenzothiazoles and quinoxalines in green medium ethanol compared with the ones synthesized via grinding and wet-impregnation. Moreover, control experiments showed that the catalyst was successfully used in green oxidative esterification and coupling as well. Cu–Mn/HT was characterized by BET, ICP, XRD, XPS, SEM and TEM, which indicated that more surface oxygen vacancies and formed CuMn2O4 species on HT might contribute to the catalytic activity.

Graphical abstract: Ball-milling synthesized hydrotalcite supported Cu–Mn mixed oxide under solvent-free conditions: an active catalyst for aerobic oxidative synthesis of 2-acylbenzothiazoles and quinoxalines

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2018
Accepted
30 Jul 2018
First published
30 Jul 2018

Green Chem., 2018,20, 4638-4644

Ball-milling synthesized hydrotalcite supported Cu–Mn mixed oxide under solvent-free conditions: an active catalyst for aerobic oxidative synthesis of 2-acylbenzothiazoles and quinoxalines

X. Meng, X. Bi, C. Yu, G. Chen, B. Chen, Z. Jing and P. Zhao, Green Chem., 2018, 20, 4638 DOI: 10.1039/C8GC01816B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements