Volume 209, 2018

Electric field mediated separation of water–ethanol mixtures in carbon-nanotubes integrated in nanoporous graphene membranes

Abstract

We investigate the influence of an applied electric field on the separation of a water–ethanol solution inside a carbon nanotube (CNT) using a series of molecular dynamics simulations. The electric field is applied at an angle θ with respect to the axis of the CNT. The study uncovers that with the application of a ‘small-angle’ electric field (e.g. smaller θ), the water molecules exhibit preferential occupancy inside the CNT, whereas the application of the same electric field at a ‘wide-angle’ mode (e.g. higher θ) fills the CNT with ethanol molecules in place of water. Remarkably, the direction of the electric field plays a pivotal role because the field exerts a contrasting influence on the behaviours of the water and ethanol molecules. The water dipoles are favourably aligned at small values of θ creating an ordered water structure inside the CNT. Increasing θ disrupts the water dipole orientation and leads to the preferential occupancy of the CNT by ethanol molecules. An in-depth analysis on the simulated systems unveil that, at lower values of θ, multiple layers of water molecules are physically adsorbed near the CNT walls, which is found to diminish as θ is increased. In comparison, at higher magnitudes of θ, the ethanol molecules are preferentially adsorbed inside the CNT. The average interaction energy per ethanol (water) molecule is found to increase (reduce) when θ is monotonically increased, which can be ascribed to the increase (decrease) in the intermolecular hydrogen bonding capacity of the ethanol (water) molecules at larger values of θ. Consequently, inside the CNT, the average occupancy of water molecules decreases and ethanol molecules increases, as θ is monotonically increased, leading to the separation of the ethanol–water mixture. The proposed methodology can convert an equimolar mixture (1 : 1) of ethanol–water into a concentrated one (14 : 1) when the electric field is applied orthogonal to the axis of the CNT. The separation efficiency is found to improve with an increase in the intensity of the externally applied electric field.

Graphical abstract: Electric field mediated separation of water–ethanol mixtures in carbon-nanotubes integrated in nanoporous graphene membranes

Associated articles

Article information

Article type
Paper
Submitted
12 Feb 2018
Accepted
16 Apr 2018
First published
16 Apr 2018

Faraday Discuss., 2018,209, 259-271

Electric field mediated separation of water–ethanol mixtures in carbon-nanotubes integrated in nanoporous graphene membranes

M. P. Borthakur, D. Bandyopadhyay and G. Biswas, Faraday Discuss., 2018, 209, 259 DOI: 10.1039/C8FD00027A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements