Issue 16, 2018

Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials

Abstract

Graphene, despite being the best known strong and electrical/thermal conductive material, has found limited success in practical applications, mostly due to difficulties in the formation of desired large-scale highly organized structures. Our discovery of a liquid crystalline phase formation in graphene oxide dispersion has enabled a broad spectrum of highly aligned graphene-based structures, including films, fibers, membranes, and mesoscale structures. In this review, the current understanding of the structure–property relationship of graphene oxide liquid crystals (GOLCs) is overviewed. Various synthetic methods and parameters that can be optimized for GOLC phase formation are highlighted. Along with the results from different characterization methods for the identification of the GOLC phases, the typical characteristics of different types of GOLC phases introduced so far, including nematic, lamellar and chiral phases, are carefully discussed. Finally, various interesting applications of GOLCs are outlined together with the future prospects for their further developments.

Graphical abstract: Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials

Article information

Article type
Review Article
Submitted
16 Apr 2018
First published
16 Jul 2018

Chem. Soc. Rev., 2018,47, 6013-6045

Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials

S. Padmajan Sasikala, J. Lim, I. H. Kim, H. J. Jung, T. Yun, T. H. Han and S. O. Kim, Chem. Soc. Rev., 2018, 47, 6013 DOI: 10.1039/C8CS00299A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements