Issue 22, 2018

Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms

Abstract

The effects of four heteroatoms (B, N, P, and S) with three doping patterns on graphene quantum dots (GQDs) are systematically investigated using time-dependent density functional theory (TD-DFT). The absorption spectra and HOMO–LUMO gaps are quantitatively analyzed to study the correlations between the optical properties and heteroatom doping of doped GQDs. Heteroatom doping can endow GQDs with various new optical and structural properties, depending on the dopants and doping configurations. Compared with the absorption spectra of pristine GQD, both N and S surface doping demonstrate a slight blue shift, whereas B and P doping lead to a blue shift for edge-doped GQDs with heteroatoms in a pentatomic ring. The absorption process is investigated along with excited state analysis, which includes the density of state, natural transition orbital, and charge difference density. The results indicate that large radius atoms assist charge transfer in the excited state and play an important role in recombining the electron density distribution in the doped GQDs.

Graphical abstract: Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2018
Accepted
02 May 2018
First published
02 May 2018

Phys. Chem. Chem. Phys., 2018,20, 15244-15252

Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms

J. Feng, H. Dong, B. Pang, F. Shao, C. Zhang, L. Yu and L. Dong, Phys. Chem. Chem. Phys., 2018, 20, 15244 DOI: 10.1039/C8CP01403E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements