Kamonwad
Ngamchuea
,
Korbua
Chaisiwamongkhol
,
Christopher
Batchelor-McAuley
and
Richard G.
Compton
*
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK. E-mail: richard.compton@chem.ox.ac.uk; Fax: +44 (0)1865275410; Tel: +44 (0)1865275957
First published on 15th January 2018
Correction for ‘Chemical analysis in saliva and the search for salivary biomarkers – a tutorial review’ by Kamonwad Ngamchuea, et al., Analyst, 2018, 143, 81–99.
Real saliva composition | Normal range | Ref. | ||
---|---|---|---|---|
Saliva | Other biological fluids | |||
a U mL−1: enzymatic activity per unit (mL) of saliva. | ||||
1. Inorganic compounds | Na+ | 20–80 mmol L−1 | Plasma 145 mmol L−1 | 11 |
K+ | 20 mmol L−1 | 4 mmol L−1 | ||
Ca2+ | 1–4 mmol L−1 | 2.2 mmol L−1 | ||
Cl− | 30–100 mmol L−1 | 120 mmol L−1 | ||
HCO3− | 15–80 mmol L−1 | 25 mmol L−1 | ||
Phosphate | 4 mmol L−1 | 1.2 mmol L−1 | ||
Mg2+ | 0.2 mmol L−1 | 1.2 mmol L−1 | ||
SCN− | 2 mmol L−1 | <0.2 mmol L−1 | ||
NH3 | 3 mmol L−1 | 0.05 mmol L−1 | ||
2. Organic compounds (non-protein and lipids) | Uric acid | 3.38 ± 0.21 mg dL−1 | Serum 6.31 ± 0.24 mg dL−1 | 21–23 |
217.2 ± 110.3 mol L−1 | ||||
0.1–7.5 mg dL−1 | ||||
Bilirubin | 0.5–5.0 μmol L−1 | Serum 0.2–1.2 mg dL−1 | 24 | |
Creatinine | 0.12 ± 0.06 mg dL−1 | Serum 0.89 ± 0.17 mg dL−1 | 25 | |
0.05–0.2 mg dL−1 | Serum 0.6–1.5 mg dL−1 | |||
Glucose | 4–13 mg dL−1 | Blood 80–120 mg dL−1 | 22 and 26 | |
Blood 88.6 ± 8.0 mg dL−1 | ||||
Cholesterol | 0.02–5.46 μmol L−1 | Serum <5 mmol L−1 | 27 | |
Lactate | 0.3–1.8 mM | Serum 0.5–1.0 mM | 28 and 29 | |
0.1 to 2.5 mmol L−1 | ||||
3. Protein/polypeptide compounds | α-Amylase | 19–308 U mL−1![]() |
Serum 0.05–0.125 U mL−1![]() |
23 and 30 |
93 ± 62 U L−1![]() |
||||
2.64 ± 1.8 mg mL−1 | ||||
Albumin | 0.2 ± 0.1 mg mL−1 | Serum 3.5–5.5 g dL−1 | 31 | |
Secretory-IgA | 80–717 mg dL−1 | Serum 70–400 mg dL−1 | 23 and 32 | |
124.3–333.5 μg mL−1 | ||||
Mucin group | MUC5B: 2.4 ± 1.7 U mL−1 | Serum 9.9 ± 0.8 ng ml−1 | 31 and 33 | |
1.19 ± 0.17 mg mL−1 | ||||
Lysozyme | 3–50 μg mL−1 | Serum 7.4 ± 1.8 mg mL−1 | 23, 32 and 34 | |
59.7 to 1062.3 μg ml−1 | Serum 4–9 μg mL−1 | |||
Total proteins | 7.1–223.2 mg dL−1 | Serum 6–8 g dL−1 | 23 and 31 | |
0.9 ± 0.2 mg mL−1 | ||||
4. Hormones | Cortisol | 3.5–27.0 mg dL−1 | Serum 2–25 mg dL−1 | 35 |
Testosterone | 32–55 pg mL−1 | Serum 320–600 ng dL−1 | 36 | |
Progesterone | Luteal phase 436 ± 34 pmol L−1 | Serum male: <1 ng mL−1 | 37 | |
Follicular phase 22.1 ± 2.7 pmol L−1 | Serum female: 0.1–20 ng mL−1 | |||
Estrogen (Estradiol) | Luteal phase 20.6 ± 0.4 pmol L−1 | Serum male: 15–60 pg mL−1 | 37 | |
Serum female: 15–370 pg mL−1 |
Artificial saliva compositions | Concentration (g L−1) | |||||
---|---|---|---|---|---|---|
AFNOR14,15 | Fusayama-Meyer16 | SAGF17,18 | Klimek19 | Shellis12 | ||
a Bacto-Mucin bacteriological. b Somogyi's unit/L is a measure of the level of activity of amylase in blood serum. One Somogyi unit is defined as the amount of amylase required to produce the equivalent of 1 mg of glucose when acting on a standard starch solution under a defined condition.38 | ||||||
1. Inorganic compounds | NaCl | 6.70 | 0.40 | 0.13 | 0.58 | — |
KCl | 1.20 | 0.40 | 0.96 | 1.27 | 1.16 | |
Na2HPO4 | 0.26 | — | — | 0.34 | 0.375 | |
KH2PO4 | 0.20 | — | 0.66 | 0.33 | 0.35 | |
NaHCO3 | 1.50 | 0.10 | 0.63 | — | 0.54 | |
KSCN | 0.33 | — | 0.19 | 0.16 (NaSCN) | 0.22 | |
CaCl2·2H2O | — | 0.795 | 0.23 | 0.17 | 0.21 | |
Na2S·9H2O | — | 0.005 | — | — | — | |
Urea | — | 1.00 | 0.20 | 0.20 | 0.17 | |
NaH2PO4·H2O | — | 0.69 | — | — | — | |
NH4Cl | — | — | 0.18 | 0.16 | 0.233 | |
Na2SO4·10H2O | — | — | 0.76 | — | — | |
MgCl2·6H2O | — | — | — | — | 0.043 | |
Sodium citrate | — | — | — | — | 0.013 | |
2. Organic compounds | Ascorbic acid | — | — | — | 0.002 | — |
Glucose | — | — | — | 0.03 | — | |
Uric acid | — | — | — | — | 0.0105 | |
Creatinine | — | — | — | — | 0.0001 | |
Choline | — | — | — | — | 0.013 | |
Mixture of vitamins | — | — | — | — | 0.0008 | |
3. Protein/polypeptide compounds | Mucin | — | — | — | 2.70a | — |
Glycoprotein | — | — | — | — | 2.5 | |
Alpha amylase | — | — | — | — | 3 × 105 Somogyi's unit L−1![]() |
|
Albumin | — | — | — | — | 0.025 | |
Mixture of amino acids | — | — | — | — | 0.041 |
The concentrations of blood glucose were misplaced into the ‘Saliva’ column. They are now moved to the correct ‘Other biological fluids’ column. A full, corrected Table 1 is reproduced here.
The concentration of CaCl2·2H2O (ref. Fusayama-Meyer16) was given incorrectly. The concentration of NH4Cl (ref. SAGF17,18) was missing. A full, corrected Table 2 is reproduced here.
Incorrect values were given for linear ranges, LOD and the pH of the buffers for some of the detection methods in Table 4. The specific changes relate to Phosphate (linear range and buffer pH), caffeine (LOD for the molecularly imprinted electrode and linear range for the SWNCT/CC electrode), glutathione (medium for the Prussian blue/SPE electrode and linear range for the caffeic acid/GC electrode) and uric acid (LOD). A full, corrected Table 4 is reproduced here.
The methods highlighted in grey and blue have been validated in artificial saliva and real saliva, respectively. Methods: AMP: amperometry, CA: chronoamperometry, CE: capillary electrophoresis, CV: cyclic voltammetry, DPV: differential pulse voltammetry, EIS: electrochemical impedance spectroscopy, ISE: ion-selective electrode, LSV: linear sweep voltammetry, MPA: multiple-pulse amperometry, SWV: square wave voltammetry. Electrodes: BDD: boron-doped diamond, BPPG: basal plane pyrolytic graphite, CC: carbon ceramic, CIL: carbon ionic liquid, CNF: carbon nanofiber, CP: carbon paste, EPPG: edge plane pyrolytic graphite, GC: glassy carbon electrode, MWCNT: multi-walled carbon nanotube, NP: nanoparticle, SPE: screen-printed electrode, SWCNT: single-walled carbon nanotube, SWCNH: single-walled carbon nanohorn.a Not stated in the text – values are taken from calibration curves present in the papers. |
---|
![]() |
![]() |
12 R. P. Shellis, Arch. Oral Biol., 1978, 23, 485–489.
14 K. Elagli, M. Traisnel and H. F. Hildebrand, Electrochim. Acta, 1993, 38, 1769–1774.
15 F. C. Giacomelli, C. Giacomelli and A. Spinelli, J. Braz. Chem. Soc., 2004, 15, 541–547.
16 J.-M. Meyer, Corros. Sci., 1977, 17, 971–982.
17 B. Levallois, Y. Fovet, L. Lapeyre and J. Y. Gal, Dent. Mater., 1998, 14, 441–447.
18 J.-Y. Gal, Y. Fovet and M. Adib-Yadzi, Talanta, 2001, 53, 1103–1115.
19 J. Klimek, E. Hellwig and G. Ahrens, Caries Res., 1982, 16, 156–161.
21 K. Shibasaki, M. Kimura, R. Ikarashi, A. Yamaguchi and T. Watanabe, Metabolomics, 2012, 8, 484–491.
22 M. Soukup, I. Biesiada, A. Henderson, B. Idowu, D. Rodeback, L. Ridpath, E. G. Bridges, A. M. Nazar and K. G. Bridges, Diabetol. Metab. Syndr., 2012, 4, 14–14.
23 O. Hershkovich and R. M. Nagler, Arch. Oral Biol., 2004, 49, 515–522.
24 E. De Corso, S. Baroni, S. Agostino, G. Cammarota, G. Mascagna, A. Mannocci, M. Rigante and J. Galli, Ann. Surg., 2007, 245, 880–885.
25 R. Venkatapathy, V. Govindarajan, N. Oza, S. Parameswaran, B. Pennagaram Dhanasekaran and K. V. Prashad, Int. J. Nephrol., 2014, 2014, 6.
26 S. Kumar, S. Padmashree and R. Jayalekshmi, Contemp. Clin. Dent., 2014, 5, 312–317.
27 S. Karjalainen, L. Sewón, E. Soderling, B. Larsson, I. Johansson, O. Simell, H. Lapinleimu and R. Seppänen, J. Dent. Res., 1997, 76, 1637–1643.
28 R. Segura, C. Javierre, J. L. Ventura, M. A. Lizarraga, B. Campos and E. Garrido, Br. J. Sports Med., 1996, 30, 305–309.
29 C. G. J. Schabmueller, D. Loppow, G. Piechotta, B. Schütze, J. Albers and R. Hintsche, Biosens. Bioelectron., 2006, 21, 1770–1776.
30 A. L. Mandel, C. Peyrot des Gachons, K. L. Plank, S. Alarcon and P. A. S. Breslin, PLoS One, 2010, 5, e13352.
31 A. Almståhl, M. Wikström and J. Groenink, Oral Microbiol. Immunol., 2001, 16, 345–352.
32 V. Ng, D. Koh, Q. Fu and S.-E. Chia, Clin. Chim. Acta, 2003, 338, 131–134.
33 S. Kejriwal, R. Bhandary, B. Thomas and S. Kumari, J. Clin. Diagn. Res., 2014, 8, ZC56–ZC60.
34 H. Tomita, S. Sato, R. Matsuda, Y. Sugiura, H. Kawaguchi, T. Niimi, S. Yoshida and M. Morishita, Lung, 1999, 177, 161–167.
35 L. Manetti, G. Rossi, L. Grasso, V. Raffaelli, I. Scattina, S. Del Sarto, M. Cosottini, A. Iannelli, M. Gasperi, F. Bogazzi and E. Martino, Eur. J. Endocrinol., 2013, 168, 315–321.
36 M. Yasuda, S. Honma, K. Furuya, T. Yoshii, Y. Kamiyama, H. Ide, S. Muto and S. Horie, J. Mens Health, 2008, 5, 56–63.
37 Y. C. Lu, G. R. Bentley, P. H. Gann, K. R. Hodges and R. T. Chatterton, Fertil. Steril., 1999, 71, 863–868.
38 M. Somogyi, J. Biol. Chem., 1938, 125, 399–414.
156 P. T. Lee, L. M. Goncalves and R. G. Compton, Sens. Actuators, B, 2015, 221, 962–968.
158 K. Ngamchuea, C. Lin, C. Batchelor-McAuley and R. G. Compton, Anal. Chem., 2017, 89, 3780–3786.
179 H. D. Schwartz, Clin. Chim. Acta, 1975, 64, 227–239.
180 S. M. Friedman, S. L. Wong and J. H. Walton, J. Appl. Physiol., 1963, 18, 950–954.
187 S. Berchmans, R. Karthikeyan, S. Gupta, G. E. J. Poinern, T. B. Issa and P. Singh, Sens. Actuators, B, 2011, 160, 1224–1231.
188 M. F. Alecrim, F. M. Oliveira, T. J. Guedes, C. D. c. Neves, V. A. Mendonça, E. S. Gil, R. M. Verly and W. T. P. dos Santos, Electrochim. Acta, 2016, 222, 331–337.
189 H. Nian, J. Wang, H. Wu, J. G. Lo, K. H. Chiu, J. G. Pounds and Y. Lin, Anal. Chim. Acta, 2012, 713, 50–55.
190 S.-J. Wang, H.-W. Liaw and Y.-C. Tsai, Electrochem. Commun., 2009, 11, 733–735.
191 C. T. Wu, P. Y. Chen, J. G. Chen, V. Suryanarayanan and K. C. Ho, Anal. Chim. Acta, 2009, 633, 119–126.
192 M. J. Sims, N. V. Rees, E. J. F. Dickinson and R. G. Compton, Sens. Actuators, B, 2010, 144, 153–158.
193 L. Highton, R. O. Kadara, N. Jenkinson, B. Logan Riehl and C. E. Banks, Electroanalysis, 2009, 21, 2387–2389.
194 Ľ. Švorc, D. M. Stanković and K. Kalcher, Diamond Relat. Mater., 2014, 42, 1–7.
195 K. Liu, W. Z. Wei, J. X. Zeng, X. Y. Liu and Y. P. Gao, Anal. Bioanal. Chem., 2006, 385, 724–729.
196 S. Ward-Jones, C. E. Banks, A. O. Simm, L. Jiang and R. G. Compton, Electroanalysis, 2005, 17, 1806–1815.
197 M. Badea, A. Amine, G. Palleschi, D. Moscone, G. Volpe and A. Curulli, J. Electroanal. Chem., 2001, 509, 66–72.
198 S. I. R. Malha, J. Mandli, A. Ourari and A. Amine, Electroanalysis, 2013, 25, 2289–2297.
199 J. Davis, K. J. McKeegan, M. F. Cardosi and D. H. Vaughan, Talanta, 1999, 50, 103–112.
200 A. C. Torres, M. M. Barsan and C. M. Brett, Food Chem., 2014, 149, 215–220.
201 G. A. M. Mersal, Food Anal. Methods, 2011, 5, 520–529.
202 X. Kan, T. Liu, C. Li, H. Zhou, Z. Xing and A. Zhu, J. Solid State Electrochem., 2012, 16, 3207–3213.
203 B. Habibi, M. Abazari and M. H. Pournaghi-Azar, Chin. J. Catal., 2012, 33, 1783–1790.
204 R. N. Goyal, S. Bishnoi and B. Agrawal, J. Electroanal. Chem., 2011, 655, 97–102.
205 P. Yang, W. Wei and C. Tao, Anal. Chim. Acta, 2007, 585, 331–336.
206 J. S. Easow, P. Gnanaprakasam and T. Selvaraju, Res. Chem. Intermed., 2015, 42, 2539–2551.
207 A. Safavi, N. Maleki, E. Farjami and F. A. Mahyari, Anal. Chem., 2009, 81, 7538–7543.
208 J. C. Ndamanisha, J. Bai, B. Qi and L. Guo, Anal. Biochem., 2009, 386, 79–84.
209 P. T. Lee, K. R. Ward, K. Tschulik, G. Chapman and R. G. Compton, Electroanalysis, 2014, 26, 366–373.
210 N. Lawrence, J. Davis and R. G. Compton, Talanta, 2001, 53, 1089–1094.
211 F. Ricci, F. Arduini, C. S. Tuta, U. Sozzo, D. Moscone, A. Amine and G. Palleschi, Anal. Chim. Acta, 2006, 558, 164–170.
212 D. Lowinsohn, P. T. Lee and R. G. Compton, Int. J. Electrochem. Sci., 2014, 9, 3458–3472.
213 P. T. Lee and R. G. Compton, Electroanalysis, 2013, 25, 1613–1620.
214 C. L. Sun, H. H. Lee, J. M. Yang and C. C. Wu, Biosens. Bioelectron., 2011, 26, 3450–3455.
215 Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang and X. H. Xia, Biosens. Bioelectron., 2012, 34, 125–131.
216 S. Zhu, H. Li, W. Niu and G. Xu, Biosens. Bioelectron., 2009, 25, 940–943.
217 R. Zhang, G.-D. Jin, D. Chen and X.-Y. Hu, Sens. Actuators, B, 2009, 138, 174–181.
218 J. C. Fanguy and C. S. Henry, Electrophoresis, 2002, 23, 767–773.
219 J. M. Zen and P. J. Chen, Anal. Chem., 1997, 69, 5087–5093.
220 A. Safavi, N. Maleki, O. Moradlou and F. Tajabadi, Anal. Biochem., 2006, 359, 224–229.
221 K. Shi and K.-K. Shiu, Electroanalysis, 2001, 13, 1319–1325.
222 Y.-H. Zhu, Z.-L. Zhang and D.-W. Pang, J. Electroanal. Chem., 2005, 581, 303–309.
223 Y. Li, S. Wu, P. Luo, J. Liu, G. Song, K. Zhang and B. Ye, Anal. Sci., 2012, 28, 497–502.
224 G. J. Yang, K. Wang, J. J. Xu and H. Y. Chen, Anal. Lett., 2007, 37, 629–643.
225 H. Yin, X. Meng, H. Su, M. Xu and S. Ai, Food Chem., 2012, 134, 1225–1230.
226 J. Zen, Talanta, 1999, 50, 635–640.
227 Y. Fan, J. H. Liu, H. T. Lu and Q. Zhang, Colloids Surf., B, 2011, 85, 289–292.
228 J. Li, J. Liu, G. Tan, J. Jiang, S. Peng, M. Deng, D. Qian, Y. Feng and Y. Liu, Biosens. Bioelectron., 2014, 54, 468–475.
229 B. G. Mahmoud, M. Khairy, F. A. Rashwan and C. E. Banks, Anal. Chem., 2017, 89, 2170–2178.
230 X. Chen, J. Zhu, Q. Xi and W. Yang, Sens. Actuators, B, 2012, 161, 648–654.
231 M. Amiri-Aref, J. B. Raoof and R. Ojani, Colloids Surf., B, 2013, 109, 287–293.
232 A. Kutluay and M. Aslanoglu, Anal. Chim. Acta, 2014, 839, 59–66.
233 R. T. Kachoosangi, G. G. Wildgoose and R. G. Compton, Anal. Chim. Acta, 2008, 618, 54–60.
234 X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay and Y. Lin, Talanta, 2010, 81, 754–759.
235 K. Chaisiwamongkhol, C. Batchelor-McAuley and R. G. Compton, Analyst, 2017, 142, 2828–2835.
236 F. Contu, M. Vega-Arroyo and S. R. Taylor, Int. J. Mater. Sci., 2014, 4, 8–13.
237 C. Zuliani, G. Matzeu and D. Diamond, Electrochim. Acta, 2014, 132, 292–296.
238 D.-M. Kim, S. J. Cho, C.-H. Cho, K. B. Kim, M.-Y. Kim and Y.-B. Shim, Biosens. Bioelectron., 2016, 79, 165–172.
The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
This journal is © The Royal Society of Chemistry 2018 |