Issue 22, 2017

Ambipolar D–A type bifunctional materials with hybridized local and charge-transfer excited state for high performance electroluminescence with EQE of 7.20% and CIEy ∼ 0.06

Abstract

Construction of donor–acceptor (D–A) molecules with a highly hybridized local and charge-transfer (HLCT) excited state has been shown to be an effective strategy to achieve the maximum electroluminescence (EL) efficiency through the synchronous harvest of high photoluminescence (PL) efficiency and exciton utilization. Herein, two novel D–A-structured bifunctional (emissive and hole-transporting) materials, PPI-2TPA and PPI-2NPA, have been designed and synthesized for application in deep-blue OLEDs. As revealed by theoretical calculations and comprehensive photophysical experiments, both of them exhibit significant HLCT excited-state characteristics and ambipolar properties. Using them as emitting layers (EML) in multilayer non-doped devices presents true deep-blue Commission Internationale de l’Eclairage (CIE) coordinates of ca. (0.15, 0.06), accompanied by record-setting performance with maximum external quantum efficiencies (EQEs) of 7.20% for PPI-2TPA and 6.33% for PPI-2NPA. Remarkably, the simple bilayer devices fabricated using them as non-dopant EML and hole-transporting layers (HTLs) still deliver EQEs as high as 4.69% and 4.10% with little changes in color purity (PPI-2TPA: CIE (0.150, 0.063) and PPI-2NPA: (0.152, 0.063)). To the best of our knowledge, this performance is the highest among the reported non-doped devices in this color gamut, irrespective of whether the two newly formed molecules functioned as EML or EML and HTL simultaneously.

Graphical abstract: Ambipolar D–A type bifunctional materials with hybridized local and charge-transfer excited state for high performance electroluminescence with EQE of 7.20% and CIEy ∼ 0.06

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2017
Accepted
08 May 2017
First published
09 May 2017

J. Mater. Chem. C, 2017,5, 5402-5410

Ambipolar D–A type bifunctional materials with hybridized local and charge-transfer excited state for high performance electroluminescence with EQE of 7.20% and CIEy ∼ 0.06

B. Liu, Z. Yu, D. He, Z. Zhu, J. Zheng, Y. Yu, W. Xie, Q. Tong and C. Lee, J. Mater. Chem. C, 2017, 5, 5402 DOI: 10.1039/C7TC01133D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements