Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Solution processability is one of the main reasons for developing polymer-based organic field-effect transistors (FETs) in the application of large-area, flexible and low-cost electronics. During the deposition process, the solvent action could exert a great influence on the self-assembly of polymers and the morphology of films, thus determining the FET performance. In this work, a bi-component solvent system composed of chloroform and dichlorobenzene was employed in the spin-coating process to fabricate bottom-gate bottom-contact FET devices. Dichlorobenzene could exhibit strong dispersive interactions to dissolve the polymers, while chloroform is less effective in solvating the polymers. By altering the ratios of the bi-component solvents, enhanced mobilities were achieved from PTD-10-TVT. This method has also proven to be effective in promoting the performance of other polymer semiconductors. Our work provides an effective method for obtaining high charge carrier mobilities in solution-processable polymer-based FET devices.

Graphical abstract: Microstructure engineering of polymer semiconductor thin films for high-performance field-effect transistors using a bi-component processing solution

Page: ^ Top