Issue 24, 2017

Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications

Abstract

Electrospun polycaprolactone (PCL) tissue engineering scaffolds have been developed and used for a wide range of tissue engineering applications, where successful incorporation and conservation of the therapeutic activity of the embedded nanoparticles into scaffolds is critically needed for effective tissue engineering. Incorporation of pro-angiogenic nanomaterials to promote vascularization is a novel approach. Our group has well-demonstrated the potent pro-angiogenic properties of europium hydroxide nanorods (EHNs) using in vitro and in vivo systems. In the present study, electrospun PCL tissue engineering scaffolds containing EHNs were fabricated and characterized for various morphological and physico-chemical properties. Furthermore, biological studies showed enhanced cell growth and a greater density of endothelial cells grown on the scaffolds incorporated with EHNs (PCL-EHNs). The PCL-EHNs also exhibited good hemo-compatibility towards blood cells. Fluorescence microscopy and SEM observations showed good endothelial cell adhesion over these scaffolds. The PCL-EHNs demonstrated augmented growth of blood vessels in an in vivo chick embryo angiogenesis model. Furthermore, protein expression studies illustrated promoted angiogenesis of HUVECs on scaffolds in a VEGFR2/Akt mediated signaling cascade. Together, the above observations strongly suggest potent applications of EHN-incorporated PCL scaffolds in promoting angiogenesis/vascularization and their effective use in tissue engineering and vascular disease therapy.

Graphical abstract: Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications

Supplementary files

Article information

Article type
Paper
Submitted
21 Feb 2017
Accepted
12 Apr 2017
First published
05 May 2017

J. Mater. Chem. B, 2017,5, 4660-4672

Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications

R. Augustine, S. K. Nethi, N. Kalarikkal, S. Thomas and C. R. Patra, J. Mater. Chem. B, 2017, 5, 4660 DOI: 10.1039/C7TB00518K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements