Issue 35, 2017

Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries

Abstract

State-of-the-art Li (or Na) ion batteries work by insertion/extraction of the alkali metal ions into a porous electrode material, where the overall capacity is strongly dependent on the accessibility of the host material interior to the ions. On the other hand, the performance stability depends on various factors governed by the specific constitution of the electrode. Here we show that molecularly engineered low-dimensional hybrid perovskites can work as excellent anode materials for alkali-ion batteries. We measure a high reversible capacity of 646 mA h g−1 at 100 mA g−1 with good stability tested up to 250 cycles for the benzidine mediated lead iodide based 1D system. An ex situ analysis of the electrodes reveals that the storage primarily occurs via the Lix(or Nax)Pb alloying/de-alloying process. We anticipate that these results open a new direction for the use of low-dimensional hybrid perovskites for energy storage applications.

Graphical abstract: Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
24 May 2017
Accepted
24 Jul 2017
First published
24 Jul 2017

J. Mater. Chem. A, 2017,5, 18634-18642

Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries

M. Tathavadekar, S. Krishnamurthy, A. Banerjee, S. Nagane, Y. Gawli, A. Suryawanshi, S. Bhat, D. Puthusseri, A. D. Mohite and S. Ogale, J. Mater. Chem. A, 2017, 5, 18634 DOI: 10.1039/C7TA04529H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements