Issue 4, 2017

Maximally dense random packings of cubes and cuboids via a novel inverse packing method

Abstract

The packings of cubes and cuboids (i.e., “elongated” or “compressed” cubes) are ubiquitous in nature. The high symmetry and space-tiling nature of such particles make them easily packable in dense configurations with a high degree of orientational and translational order. In this paper, we devise a novel inverse packing method that enables one to generate dense hard-particle packings with a controllable degree of disorder/order quantified by predefined order metrics via stochastic Monte Carlo optimizations. We employ the inverse packing method to generate and investigate the maximally dense random packings (MDRPs) of hard cubes and cuboids with aspect ratio α, in which a series of newly introduced normalized local cubatic order parameters sensitive to the onset of any spatial order in packings of cubes and cuboids is minimized. The density of the MDRP of cubes is φ ≈ 0.637, which increases as the shape deviates from the cube limit (α = 1) and reaches the maximal values for cuboids with aspect ratios α = 0.7 or 1.5. These special α values associated with local density extrema are almost identical for those associated with the random packings of spherocylinders, spheroids and superellipsoids, suggesting a universal influence of shape elongation on random packing density. Our inverse packing method can be readily utilized to study the MDRPs of other hard particles and the normalized local cubatic order parameter introduced here is applicable to other shaped particles characterized by three principal axes.

Graphical abstract: Maximally dense random packings of cubes and cuboids via a novel inverse packing method

Article information

Article type
Paper
Submitted
10 Sep 2016
Accepted
15 Dec 2016
First published
16 Dec 2016

Soft Matter, 2017,13, 748-757

Maximally dense random packings of cubes and cuboids via a novel inverse packing method

L. Liu, Z. Li, Y. Jiao and S. Li, Soft Matter, 2017, 13, 748 DOI: 10.1039/C6SM02065H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements