Issue 18, 2018

Ionic liquids for the preparation of biopolymer materials for drug/gene delivery: a review

Abstract

Biopolymers are particularly suitable for drug applications due to their biocompatibility, biodegradability, and low immunogenicity. There has been growing interest in using biopolymers to achieve the controlled release of therapeutics. However, the solubility and processability of biopolymers remain challenging due to their structural heterogeneity and dense networks of inter- and intramolecular interactions. Fortunately, ionic liquids (ILs), regarded as green solvents, have been increasingly appreciated for their unparalleled power for biopolymer processing. By the dissolution of biopolymers in ILs, various materials including sponges, films, microparticles (MPs), nanoparticles (NPs), and aerogels can be generated as potential drug delivery carriers. Besides, ILs can be used as reaction media and/or catalysts for biopolymer chemical reactions, which show enhanced reaction efficiencies. In addition, because of their unique physicochemical (e.g., polarity, hydrophobicity, amphipathicity and miscibility) and biological properties (e.g., antibacterial activity), ILs can assist or participate in the formation of drug delivery carriers. To cover all these aspects of the research, this review provides an overview of the recent progress in using ILs for the engineering of next-generation drug/gene delivery carrier materials. The tunable properties of ILs as affected by their structures are highlighted. Also, the key principles, challenges and prospects of this area are presented.

Graphical abstract: Ionic liquids for the preparation of biopolymer materials for drug/gene delivery: a review

Article information

Article type
Tutorial Review
Submitted
10 Apr 2018
Accepted
07 Aug 2018
First published
07 Aug 2018

Green Chem., 2018,20, 4169-4200

Ionic liquids for the preparation of biopolymer materials for drug/gene delivery: a review

J. Chen, F. Xie, X. Li and L. Chen, Green Chem., 2018, 20, 4169 DOI: 10.1039/C8GC01120F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements