Issue 18, 2017

Elastomeric polyethylenes accessible via ethylene homo-polymerization using an unsymmetrical α-diimino-nickel catalyst

Abstract

Five types of unsymmetrical bis(arylimino)acenaphthenes, 1-[2,4,6-(CHPh2)3C6H2N]-2-(ArN)C2C10H6 (Ar = 2,6-Me2Ph L1, 2,6-Et2Ph L2, 2,6-i-Pr2Ph L3, 2,4,6-Me3Ph L4 and 2,6-Et2-4-MePh L5), each containing a single N-2,4,6-tribenzhydrylphenyl group, have been prepared and fully characterized. The interaction of L1–L5 with (DME)NiBr2 (DME = 1,2-dimethoxyethane) afforded the corresponding 1 : 1 nickel(II) bromide chelates, LNiBr2 (Ni1–Ni5), in good yield. Distorted tetrahedral geometries are a feature of the X-ray structures of Ni1 and Ni3; broad paramagnetically shifted peaks are seen in the 1H NMR spectra for all the nickel complexes in solution. Upon activation with relatively low amounts of Et2AlCl or Me2AlCl (200–700 equivalents), Ni1–Ni5 exhibited exceptionally high activities for ethylene polymerization (up to 1.07 × 107 g of PE (mol of Ni)−1 h−1), displayed good thermal stability [2.97 × 106 g of PE (mol of Ni)−1 h−1 even at 90 °C] and produced hyperbranched polyethylenes. Dynamic mechanical analysis and stress–strain testing reveal that the polymeric materials possess good elastomeric recovery and high elongation at break, indicating a promising alternative material to thermoplastic elastomers (TPEs).

Graphical abstract: Elastomeric polyethylenes accessible via ethylene homo-polymerization using an unsymmetrical α-diimino-nickel catalyst

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2017
Accepted
05 Apr 2017
First published
05 Apr 2017

Polym. Chem., 2017,8, 2785-2795

Elastomeric polyethylenes accessible via ethylene homo-polymerization using an unsymmetrical α-diimino-nickel catalyst

X. Wang, L. Fan, Y. Ma, C. Guo, G. A. Solan, Y. Sun and W. Sun, Polym. Chem., 2017, 8, 2785 DOI: 10.1039/C7PY00434F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements