Issue 42, 2017

Thermal and electronic transport characteristics of highly stretchable graphene kirigami

Abstract

For centuries, cutting and folding papers with special patterns have been used to build beautiful, flexible and complex three-dimensional structures. Inspired by the old idea of kirigami (paper cutting), and the outstanding properties of graphene, recently graphene kirigami structures were fabricated to enhance the stretchability of graphene. However, the possibility of further tuning the electronic and thermal transport along the 2D kirigami structures has remained original to investigate. We therefore performed extensive atomistic simulations to explore the electronic, heat and load transfer along various graphene kirigami structures. The mechanical response and thermal transport were explored using classical molecular dynamics simulations. We then used a real-space Kubo–Greenwood formalism to investigate the charge transport characteristics in graphene kirigami. Our results reveal that graphene kirigami structures present highly anisotropic thermal and electrical transport. Interestingly, we show the possibility of tuning the thermal conductivity of graphene by four orders of magnitude. Moreover, we discuss the engineering of kirigami patterns to further enhance their stretchability by more than 10 times as compared with pristine graphene. Our study not only provides a general understanding concerning the engineering of electronic, thermal and mechanical response of graphene, but more importantly can also be useful to guide future studies with respect to the synthesis of other 2D material kirigami structures, to reach highly flexible and stretchable nanostructures with finely tunable electronic and thermal properties.

Graphical abstract: Thermal and electronic transport characteristics of highly stretchable graphene kirigami

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2017
Accepted
20 Sep 2017
First published
22 Sep 2017

Nanoscale, 2017,9, 16329-16341

Thermal and electronic transport characteristics of highly stretchable graphene kirigami

B. Mortazavi, A. Lherbier, Z. Fan, A. Harju, T. Rabczuk and J. Charlier, Nanoscale, 2017, 9, 16329 DOI: 10.1039/C7NR05231F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements