Issue 3, 2017

Effects of dietary glucocerebrosides from sea cucumber on the brain sphingolipid profiles of mouse models of Alzheimer's disease

Abstract

Herein, we investigated the potential relationship between sphingolipids and Alzheimer's disease (AD) with special attention to the relationship between dietary sea cucumber glucocerebrosides (SCGs) and sphingolipid metabolism. We assessed animal behavior using the Morris water maze test, determined Aβ1-42 concentration in the hippocampus using ELISA, and assessed the sphingolipid profile of the hippocampus and the cortex in normal mice (SAMR1), AD mice (SAMP8), and AD mice (SAMP8) fed with SCG using liquid chromatography-triple quadrupole mass spectrometry. We found that the SAMP8 mice had impaired memory and an SCG diet significantly rescued spatial memory deficits in these mice. As expected, we found that the profiles of sphingolipid species and the levels of total cerebrosides (CBS), ceramides (Cer), and sulfatides (ST) were significantly different in both the hippocampus and the cortex between the three groups; moreover, there were significantly lower ST levels and higher Cer and CBS levels in these regions in the SAMP8 mice. In the AD-SCG group, Cer and ST levels were altered only in the hippocampus, in contrast to the AD group. The major molecular species ST (d18:1-C24:1) and Cer (d18:1/18:0) were especially different between those of the two groups. Unexpectedly, sphingolipid profiles, including the nonhydroxylated fatty acid-ST/hydroxylated fatty acid-ST, very long fatty acid-galactocerebroside/long fatty acid-galactocerebroside, nonhydroxylated fatty acid-galactocerebroside/hydroxylated fatty acid-galactocerebroside and galactocerebroside/glucocerebroside ratios, were affected by AD. Thus, the ST and Cer levels and the profiles of sphingolipid species in the AD-SCG group were significantly different compared to those of the AD model group. Therefore, SCG has potential ameliorative effects in AD, and exogenous sphingolipid intake may potentially influence sphingolipid metabolism in vivo.

Graphical abstract: Effects of dietary glucocerebrosides from sea cucumber on the brain sphingolipid profiles of mouse models of Alzheimer's disease

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2016
Accepted
08 Feb 2017
First published
10 Feb 2017

Food Funct., 2017,8, 1271-1281

Effects of dietary glucocerebrosides from sea cucumber on the brain sphingolipid profiles of mouse models of Alzheimer's disease

Y. Song, P. Cong, L. Lu, Y. Wang, Q. Tang, H. Zhang, J. Xu and C. Xue, Food Funct., 2017, 8, 1271 DOI: 10.1039/C6FO01659F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements