Volume 204, 2017

What can be inferred from moiré patterns? A case study of trimesic acid monolayers on graphite

Abstract

Self-assembly of benzene-1,3,5-tricarboxylic acid (trimesic acid – TMA) monolayers at the alkanoic acid–graphite interface is revisited. Even though this archetypal model system for hydrogen bonded porous networks is particularly well studied, the analysis of routinely observed superperiodic contrast modulations known as moiré patterns lags significantly behind. Fundamental questions remain unanswered such as, are moiré periodicity and orientation always the same, i.e. is exclusively only one specific moiré pattern observed? What are the geometric relationships (superstructure matrices) between moiré, TMA, and graphite lattices? What affects the moiré pattern formation? Is there any influence from solvent, concentration, or thermal treatment? These basic questions are addressed via scanning tunneling microscopy experiments at the liquid–solid interface, revealing a variety of different moiré patterns. Interestingly, TMA and graphite lattices were always found to be ∼5° rotated with respect to each other. Consequently, the observed variation in the moiré patterns is attributed to minute deviations (<2°) from this preferred orientation. Quantitative analysis of moiré periods and orientations facilitates the determination of the TMA lattice parameter with picometer precision.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2017
Accepted
09 May 2017
First published
09 May 2017

Faraday Discuss., 2017,204, 331-348

What can be inferred from moiré patterns? A case study of trimesic acid monolayers on graphite

S. Spitzer, O. Helmle, O. Ochs, J. Horsley, N. Martsinovich, W. M. Heckl and M. Lackinger, Faraday Discuss., 2017, 204, 331 DOI: 10.1039/C7FD00113D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements