Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Developing supercapacitor electrodes with an ultra-long cycle life and a high specific capacitance is critical to the future energy storage devices. Herein, we report a scalable synthesis technology of mixed-valence manganese oxide nanoparticles anchored to reduced graphene oxide (rGO/MnOx) as the high-performance supercapacitor electrodes. First, 2-dimensional (2D) δ-MnO2 nanosheets are formed on a graphene oxide (GO) template, which is then in situ reduced by hydrazine vapour to mixed-valence manganese oxide nanoparticles evenly distributed on a rGO conductive network. The obtained rGO/MnOx electrode material exhibits a high specific capacitance of 202 F g−1 (mass loading of 2 mg cm−2), a large areal specific capacitance of 2.5 F cm−2 (mass loading of up to 19 mg cm−2), and a super-long-life stability of 106% capacitance retention after 115 000 charge/discharge cycles. By using an ionic liquid electrolyte and an activated carbon anode, asymmetric supercapacitors (AScs) are also constructed and can be packaged into a high performance miniaturized energy storage component in either a tailorable or surface mountable configuration. Our ASc shows superior performance characteristics, with typical figures of merit including maximum energy densities of 47.9 W h kg−1 at 270 W kg−1 and 19.1 W h kg−1 at the maximum power density of 20.8 kW kg−1. The capacitance retention of the ASc is 96% after 80 000 charge/discharge cycles, which is the most excellent stability performance in an ionic liquid electrolyte as compared with the recently reported pseudo-supercapacitors. This technology may find vast applications in future miniaturized portable and wearable electronics.

Graphical abstract: A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life

Page: ^ Top