TD-DFT calculations of one- and two-photon absorption in Coumarin C153 and Prodan: attuning theory to experiment†
Abstract
We use TD-DFT to calculate the one-photon absorption (1PA) and two-photon absorption (2PA) properties of C153 and Prodan in toluene and DMSO, and benchmark different methods relative to accurate experimental data available from the literature on these particular systems. As the first step, we modify the range-separated TD-DFT to provide the best prediction for the peak 1PA wavelength, and then apply the optimized functionals to achieve quantitative predictions of the corresponding two-photon absorption cross section, σ2PA, with an accuracy ∼10–20% in C153 and ∼20–30% in Prodan. To elucidate the origin of residual discrepancies between the theory and experimental observations, we invoked the two essential states model for σ2PA, which allows us to verify not only the transition wavelength and the σ2PA value, but also to quantitatively benchmark the calculation of key molecular parameters such as the transition dipole moment and the change of the permanent dipole moment. Such comprehensive cross-checking indicates that a larger discrepancy in Prodan is most likely caused by a noted failure of DFT to predict the relative intensity and relative ordering of closely lying excited states with different degrees of intramolecular charge transfer, which we further support by analyzing the predictions obtained by high-level coupled-cluster calculations in the gas phase. Our results highlight the utility of benchmarking the calculations not only relative to other theoretical methods, but also in comparison to the experimental measurements, wherever such data are available.