Issue 12, 2016

High thermoelectric performance in Sn-substituted α-As2Te3

Abstract

Lead chalcogenides PbX (X = Te, Se, S) have been the materials of choice for thermoelectric power generation at mid-range temperatures (500–700 K). Here, we report on a new family of chalcogenides α-As2Te3 that exhibit similar thermoelectric performances near 500 K. Sn doping in p-type polycrystalline α-As2−xSnxTe3 (x ≤ 0.075) provides an efficient control parameter to tune the carrier concentration leading to thermopower values that exceed 300 μV K−1 at 500 K. Combined with the structural complexity of the monoclinic lattice that results in extremely low thermal conductivity (0.55 W m−1 K−1 at 523 K), a peak ZT value of 0.8 is achieved at 523 K for x = 0.05. A single-parabolic band model is found to capture well the variations in the transport properties with the Sn concentration and suggests that higher ZT values could be achieved through band structure engineering. These results surpass those obtained in the sister compounds β-As2−xSnxTe3 and further show that α-As2Te3 based materials are competitive with other chalcogenides for thermoelectric applications at intermediate temperatures.

Graphical abstract: High thermoelectric performance in Sn-substituted α-As2Te3

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2015
Accepted
22 Feb 2016
First published
23 Feb 2016

J. Mater. Chem. C, 2016,4, 2329-2338

High thermoelectric performance in Sn-substituted α-As2Te3

J. B. Vaney, J. Carreaud, G. Delaizir, A. Piarristeguy, A. Pradel, E. Alleno, J. Monnier, E. B. Lopes, A. P. Gonçalves, A. Dauscher, C. Candolfi and B. Lenoir, J. Mater. Chem. C, 2016, 4, 2329 DOI: 10.1039/C5TC04267D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements