Issue 39, 2016

Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis(fluorosulfonyl)imide-based ionic liquid

Abstract

An ionic liquid (IL) electrolyte with 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI) is applied to a silicon (Si) composite anode for Lithium-ion batteries (LIB). Si is one of the most promising anode materials for LIBs and fluoroethylene carbonate (FEC) has been widely used as an electrolyte additive with Si anodes to enhance electrochemical performance. However, the effect of FEC only lasts for a limited number of cycles. To overcome this issue, a bis(fluorosulfonyl)imide (FSI)-based IL is studied as a potential electrolyte candidate for a Si composite anode. Its effects on the electrochemical performance and the corresponding solid electrolyte interphase (SEI) formation on the Si composite anode are not well understood. This work addresses the correlation between the electrochemical performance and SEI formation to probe the surface chemistry on the Si composite anode. We find that the FSI-based electrolyte provides a stable and reversible capacity in long term cycling tests. This electrolyte has excellent rate capability compared to that of carbonate-based electrolytes. The decomposition products of these electrolytes on Si anodes are investigated by X-ray photoelectron spectroscopy. These results show that the chemical composition on the surface of the Si anode is largely different when using the FSI-based electrolyte than it is when using carbonate type electrolytes. The decomposition products of the IL lead to a large number of inorganic species such as LiOH and Li2O, which yield superior rate capability for the IL electrolyte. The FSI-based IL offers promising applicability for a practical Si composite anode.

Graphical abstract: Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis(fluorosulfonyl)imide-based ionic liquid

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2016
Accepted
30 Aug 2016
First published
30 Aug 2016

J. Mater. Chem. A, 2016,4, 15117-15125

Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis(fluorosulfonyl)imide-based ionic liquid

H. Shobukawa, J. Shin, J. Alvarado, C. S. Rustomji and Y. S. Meng, J. Mater. Chem. A, 2016, 4, 15117 DOI: 10.1039/C6TA06447G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements