Issue 16, 2016

Achieving a high fill factor for organic solar cells

Abstract

Organic photovoltaics (OPVs) have developed rapidly in the last decades due to their potential for providing cost-efficient, low-energy consumption, and environmentally friendly renewable energy sources. Some research reports have focused on the device physics of organic photovoltaics that governs open circuit voltage (Voc) and short circuit current (Jsc) to improve their performance. In this review, we focus on the third parameter, fill factor (FF), that is equally important in determining the power conversion efficiency. We discuss the mathematical calculation of the FF and the relationship between the FF and equivalent circuit model elements, namely, shunt resistance, series resistance, and diode ideal factor. In order to provide a strategy toward a high FF for OPVs from the viewpoints of device design and material synthesis, we review important device features and BHJ features that have a large impact on the device FF, including preventing shorting, buffer layer design, domain size or purity, gradated BHJ structures, π–π stacking distance or direction, etc. We hope this article can provide a comprehensive insight into elements controlling the FF of OPVs and give a valuable direction for better device and material design.

Graphical abstract: Achieving a high fill factor for organic solar cells

Article information

Article type
Review Article
Submitted
06 Jan 2016
Accepted
09 Mar 2016
First published
10 Mar 2016

J. Mater. Chem. A, 2016,4, 5784-5801

Achieving a high fill factor for organic solar cells

M. Jao, H. Liao and W. Su, J. Mater. Chem. A, 2016, 4, 5784 DOI: 10.1039/C6TA00126B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements