N-Heterocyclic carbene copper(I) complex-catalyzed synthesis of 2-aryl benzoxazoles and benzothiazoles

Julio I. Urzúaa, Renato Contrerasb, Cristian O. Salasa and Ricardo A. Tapia*a
aFacultad de Química, Pontificia Universidad Católica de Chile, Código Postal 6094411, Santiago, Chile. E-mail: rtapia@uc.cl
bDepartamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

Received 20th July 2016 , Accepted 24th August 2016

First published on 25th August 2016


Abstract

A new and efficient synthesis of 2-arylbenzoxazoles and benzothiazoles using a copper N-heterocyclic carbene complex is described. In a simple protocol a variety of 2-substituted benzoxazoles and benzothiazoles were obtained via intramolecular coupling cyclization of 2-haloanilides/2-halothioanilides in good to excellent yields.


Introduction

The 2-aryl-substituted benzoxazole and benzothiazole scaffolds are present in many compounds with useful biological and pharmaceutical properties, including antitumor agents,1a,b estrogen receptor-β agonists1c and anti-trypanocidal agents1d (Fig. 1). Traditional methods to obtain 2-aryl-substituted- benzoxazoles and benzothiazoles involve condensation of 2-aminophenols and 2-aminothiophenols with carboxylic acids or aldehydes under oxidative conditions.2,3 In the last decades, transition-metal-catalyzed processes for carbon-heteroatom bond formations have been developed to obtain these heterocyclic systems.4 For example copper-,5 palladium-,6 cobalt-7 and iron-catalyzed8 intramolecular cyclization of 2-haloanilides/2-halothioanilides have been used for the synthesis of benzoxazoles and benzothiazoles.9,10
image file: c6ra18510j-f1.tif
Fig. 1 Examples of some biologically active 2-aryl-benzoxazoles and benzothiazoles.

However, these approaches often require complex ligands and long reaction times. Therefore, development of more efficient methods to obtain benzoxazoles and benzothiazoles remains as an important synthetic objective. Recently, N-heterocyclic carbene (NHC) metal complexes have emerged as a powerful tool as homogeneous catalysts in organic synthesis.11 Interestingly, copper(I) complexes with NHC ligands have demonstrated excellent catalytic activity in the synthesis of 2-substituted oxazolines,12 substituted vinylboronates,13 N-methylation of amines,14 1,3-halogen migrations,15 hydrosilylation of ketones,16 carboxylation of organoboronic esters17 and many others.18 Nevertheless, Ullmann-type reactions have scarcely been explored and only the arylation of phenols and hydroxylation of aryl iodides have been described.19 Considering these precedents we became interested in using a copper–NHC complex for an intramolecular Ullmann-type reaction to obtain benzoxazole and benzothiazole derivatives. The copper–NHC complex with the ligand 1,3-bis(2,6-diisopropylphenyl)imidazol (IPr) was chosen for our study because it showed excellent catalytic activity in other processes.12,17 Interestingly, an efficient and inexpensive synthesis of these catalysts have been recently described.20

Results and discussion

The (IPr)CuCl (2) complex was easily obtained by reaction of 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride21 (1) with Cu2O in dioxane. To start our study, N-(2-iodophenyl)benzamide 3 was chosen as model substrate to carry out optimization of the reaction conditions.

According to classical conditions of Ullmann reactions,5,11d,22 MeCN, DMSO and DMF were chosen as solvents, and K2CO3 or Cs2CO3 as bases at 80–110 °C. Initially, the intramolecular cyclization of benzamide 3 (0.3 mmol) in the presence of (IPr)CuCl (10 mol%), using Cs2CO3 (2.0 equiv.) in acetonitrile for 6 h under reflux gave benzoxazole 4 in 4% yield (Table 1, entry 1). Changing the base to K2CO3 under similar conditions the yield was increased to 10% (Table 1, entry 2). When the reaction was performed with the other selected solvents, the best choice was DMF and K2CO3 at 110 °C for 6 h that afforded 99% yield for the coupling cyclization (Table 1, entries 3–6). The effect of the catalyst loading was also examined and using 5 mol% of (IPr)CuCl the reaction provided 4 in 71% yield (Table 1, entry 7). A control experiment confirmed that, in the absence of catalyst, the formation of 4 was not observed (Table 1, entry 8). Accordingly, the optimal conditions for the intramolecular coupling cyclization of 2-halobenzanilide 3 (X = I) were (IPr)CuCl (10 mol%), K2CO3 (2.0 equiv.) in DMF at 110 °C for 6 h (Table 1, entry 6). Next the influence of the halide in the coupling reaction was evaluated, and the bromine derivative 3 (X = Br) afforded benzoxazole 4 in excellent yields (98%) while the chlorine derivative 3 (X = Cl) was not reactive (Table 1, entries 9 and 10). Therefore the reactivity for 2-halobenzanilides 3 followed the order ArI > ArBr > ArCl, which is characteristic of the Ullmann coupling reaction.11c,23

Table 1 Optimization of reaction conditions

image file: c6ra18510j-u1.tif

Entry X Base Solvent Temp. (°C) Time (h) Yielda (%)
a Isolated yields.b (IPr)CuCl (5 mol%).c Reaction performed without catalysts.
1 I Cs2CO3 MeCN 82 6 4
2 I K2CO3 MeCN 82 6 10
3 I Cs2CO3 DMSO 110 6 17
4 I K2CO3 DMSO 110 6 76
5 I Cs2CO3 DMF 110 6 63
6 I K2CO3 DMF 110 6 99
7 I K2CO3 DMF 110 6 71b
8 I K2CO3 DMF 110 6 0c
9 Br K2CO3 DMF 110 18 98
10 Cl K2CO3 DMF 110 24 0


Then, to investigate the scope of this approach, the intramolecular O-arylation of various substituted 2-haloanilides under the optimized conditions was examined. As shown in Table 2, this methodology is appropriated for a broad range of substrates having substituents on either of the aryl moieties of anilides 5. Substrates possessing electron donating substituents such as 4-Me (5a) and electron withdrawing substituents such as 4-Cl (5b), 4-CN (5c) and 4-F (5d) on the phenylamino moiety reacted efficiently, giving high yields of the corresponding benzoxazoles 6a–d (Table 2, entries 1–4).

Table 2 (NHC)-copper-catalyzed synthesis of benzoxazoles 6 from 2-haloanilides 5a

image file: c6ra18510j-u2.tif

Entry 5 6 X Time (h) Yieldb (%)
a Reaction conditions: N-(2-halophenyl)benzamide (0.3 mmol), (IPr)CuCl (10 mol%), K2CO3 (0.6 mmol), DMF.b Isolated yield.
1 image file: c6ra18510j-u3.tif image file: c6ra18510j-u4.tif I 10 92
Br 18 83
2 image file: c6ra18510j-u5.tif image file: c6ra18510j-u6.tif I 8 95
Br 18 90
3 image file: c6ra18510j-u7.tif image file: c6ra18510j-u8.tif I 12 86
4 image file: c6ra18510j-u9.tif image file: c6ra18510j-u10.tif I 12 80
5 image file: c6ra18510j-u11.tif image file: c6ra18510j-u12.tif I 12 55
6 image file: c6ra18510j-u13.tif image file: c6ra18510j-u14.tif I 14 86
Br 18 77
7 image file: c6ra18510j-u15.tif image file: c6ra18510j-u16.tif I 10 82
Br 16 75
8 image file: c6ra18510j-u17.tif image file: c6ra18510j-u18.tif I 12 86
9 image file: c6ra18510j-u19.tif image file: c6ra18510j-u20.tif I 12 87
Br 18 79
10 image file: c6ra18510j-u21.tif image file: c6ra18510j-u22.tif I 12 62
Br 24 56


The 2-haloanilide with the 4-nitro group (5e) was less reactive and gave 55% yield of benzoxazole 6e (Table 2, entry 5). Additionally, substrates having substituents such as 4-Cl (5f), 4-OMe (5g), 3,4-di-OMe (5h) and 4-Me (5i) on the benzoyl moiety gave good yields of the corresponding benzoxazoles 6f–i. (Table 2, entries 6–9). The reactivity exhibited by the 2-methyl substituted substrate (5j) was reduced probably due to steric hindrance and the yield of the respective benzoxazole 6j was 56–62% (Table 2, entry 10).

After the successful synthesis of benzoxazoles 6 from various iodo- and bromobenzanilides 5, the utility of the (IPr)CuCl (2) catalytic system for the preparation of benzothiazoles was investigated. The 2-halothioanilides 7 precursors were readily obtained by reaction of the corresponding amides 5 with Lawesson's reagent.24 The intramolecular coupling cyclization of 2-halothioanilides 7, under the optimized reactions conditions (IPr)CuCl (10 mol%), K2CO3 (2.0 equiv.) in DMF at 110 °C used in the synthesis of benzoxazoles, was evaluated.

Concerning the 2-halide substituent, the order of reactivity for 2-halothioanilides 7a was ArI > ArBr > ArCl, but in this case the chloro derivative 7a (X = Cl) gave 84% yield of benzothiazole 8a (Table 3, entry 1). The different reactivity observed for chlorine derivatives 3 and 7a is probably due to the better donating capacity of thioamides than amides.6a,25 This result is of particular interest because the literature reports for copper-catalysed intramolecular cyclization of 2-chlorothioanilides to the corresponding benzothiazoles requires high temperature and long reaction times. Regarding substrates with electron-donating as well as electron-withdrawing substituents on either of the aryl moieties (7b–f) were well tolerated and the corresponding benzothiazoles (8b–f) were obtained in excellent yields (Table 3, entries 2–6).

Table 3 (NHC)-copper-catalyzed synthesis of benzothiazoles from 2-halothioanilidesa

image file: c6ra18510j-u23.tif

Entry 7 8 X Time (h) Yieldb (%)
a Reaction conditions: N-(2-halophenyl)benzothiamide (0.3 mmol), (IPr)CuCl (10 mol%), K2CO3 (0.6 mmol), DMF.b Isolated yield.
1 image file: c6ra18510j-u24.tif image file: c6ra18510j-u25.tif I 2.5 99
Br 5 98
Cl 18 84
2 image file: c6ra18510j-u26.tif image file: c6ra18510j-u27.tif I 3.5 98
3 image file: c6ra18510j-u28.tif image file: c6ra18510j-u29.tif I 3 90
4 image file: c6ra18510j-u30.tif image file: c6ra18510j-u31.tif I 3 90
5 image file: c6ra18510j-u32.tif image file: c6ra18510j-u33.tif Br 3 97
6 image file: c6ra18510j-u34.tif image file: c6ra18510j-u35.tif Br 2 92


Finally, based on our results that the reactivity order of the substrates was ArI > ArBr > ArCl and on literature reports5e,23,26 of Cu-catalyzed C–X bond formations, probably the reaction proceeds via two-electron Cu(I)/Cu(III) catalytic cycle for the intramolecular cyclization of 2-halobenzanilides 3 to give benzoxazoles 4.

Additionally, when the reaction of 2-iodobenzanilide 3 was performed in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a radical scavenger, no inhibition of the intramolecular cyclization was observed.

Conclusions

In summary, we have reported the first (NHC)-copper-catalyzed intramolecular cyclization of 2-halobenzanilides as an efficient approach for the synthesis of 2-arylbenzoxazoles. In addition, the (NHC)-copper catalytic system has been successfully applied for the synthesis of 2-arylbenzothiazoles via intramolecular cyclization of 2-halothiobenzanilides. All products were obtained in good to excellent yields through a simple and efficient protocol without adding specific ligands or complex bases. This work demonstrates the versatility of copper–NHC complexes in a new catalytic process.

Experimental

General information

All reagents were used as purchased from commercial sources without further purification. 2-Halobenzanilides were obtained from the corresponding 2-haloanilines according to literature methods.5c Thiobenzanilides were prepared by reaction of the respective anilides with Lawesson's reagent.24 All reactions were performed under an air atmosphere in standard dried glassware and monitored by thin-layer chromatography using E. Merck silica gel 60 F254 pre-coated plates (0.25 mm). Flash chromatography was performed using silica gel (230–400 mesh, Merck). 1H and 13C NMR spectra were recorded on BRUKER AVANCE III HD-400 (11.74 T, 400 MHz to 1H and 126 MHz to 13C) NMR spectrometers using the residual proton or the carbon signal of the deuterated solvent as an internal standard.

General procedure for synthesis of benzoxazoles/benzothiazoles

A mixture of N-(2-halophenyl)benzamide/benzothiamide (1.0 equiv.), (IPr)CuCl (10 mol%), K2CO3 (2.0 equiv.) in DMF was stirred at 110 °C for the appropriate time (Tables 2 and 3). The reaction progress was monitored by TLC. After cooling, the reaction mixture was concentrated under vacuum and the residue was dissolved in ethyl acetate and washed with brine. The organic layer was dried and concentrated to give a residue, which was purified by flash chromatography on silica gel eluting with 2–10% ethyl acetate/hexane.

2-Phenylbenzoxazole (4)

N-(2-Iodophenyl)benzamide (104.2 mg, 0.32 mmol, 1.0 equiv.), K2CO3 (89 mg, 0.64 mmol, 2.0 equiv.), (IPr)CuCl (15.8 mg, 0.032 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 99% (62.4 mg, 0.32 mmol).

N-(2-Bromophenyl)benzamide (104.2 mg, 0.38 mmol, 1.0 equiv.), K2CO3 (104.2 mg, 0.76 mmol, 2.0 equiv.), (IPr)CuCl (18.4 mg, 0.038 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 98% (72.6 mg, 0.37 mmol).

White solid; mp 100–102 °C (lit.5a 101–102 °C); 1H NMR (400 MHz, CDCl3) δ = 8.29–8.24 (m, 2H), 7.80–7.77 (m, 1H), 7.60–7.56 (m, 1H), 7.54–7.50 (m, 3H), 7.37–7.33 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 163.1, 150.8, 142.1, 131.5, 128.9, 127.6, 127.2, 125.1, 124.6, 120.0, 110.6.

6-Methyl-2-phenylbenzoxazole (6a)

N-(2-Iodo-4-methylphenyl)benzamide (100 mg, 0.30 mmol, 1.0 equiv.), K2CO3 (95.2 mg, 0.69 mmol, 2.0 equiv.), (IPr)CuCl (16.9 mg, 0.030 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 92% (57 mg, 0.27 mmol).

N-(2-Bromo-4-methylphenyl)benzamide (100 mg, 0.35 mmol, 1.0 equiv.), K2CO3 (104.2 mg, 0.76 mmol, 2.0 equiv.), (IPr)CuCl (18.4 mg, 0.035 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 83% (60 mg, 0.29 mmol).

White solid; mp 91–92 °C (lit.27a 91–92 °C); 1H NMR (400 MHz, CDCl3) δ 8.28–8.20 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.52–7.48 (m, 2H), 7.36 (s, 1H), 7.16 (d, J = 8.1 Hz, 1H), 2.49 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 162.6, 151.1, 140.0, 135.6, 131.3, 128.9, 127.5, 127.4, 125.8, 119.4, 110.8, 21.8.

6-Chloro-2-phenylbenzoxazole (6b)

N-(4-Chloro-2-iodophenyl)benzamide (100.5 mg, 0.28 mmol, 1.0 equiv.), K2CO3 (77.7 mg, 0.56 mmol, 2.0 equiv.), (IPr)CuCl (13.7 mg, 0.028 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 95% (61 mg, 0.27 mmol).

N-(4-Chloro-2-bromophenyl)benzamide (95 mg, 0.31 mmol, 1.0 equiv.), K2CO3 (84.6 mg, 0.61 mmol, 2.0 equiv.), (IPr)CuCl (15 mg, 0.031 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 90% (63 mg, 0.27 mmol).

White solid; mp 104–105 °C (lit.27a 104–105 °C); 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 7.7, 1.6 Hz, 2H), 7.65 (d, J = 8.5 Hz, 1H), 7.57 (s, 1H), 7.55–7.47 (m, 3H), 7.31 (dd, J = 8.5, 1.7 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 163.7, 150.9, 140.9, 131.8, 130.7, 129.0, 127.7, 126.7, 125.3, 120.5, 111.2.

6-Ciano-2-phenylbenzoxazole (6c)

N-(4-Cyano-2-iodophenyl)benzamide (125 mg, 0.36 mmol, 1.0 equiv.), K2CO3 (99.2 mg, 0.72 mmol, 2.0 equiv.), (IPr)CuCl (17.5 mg, 0.036 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 86% (68 mg, 0.31 mmol).

White solid; mp 197–198 °C (lit.27a 198–199 °C); 1H NMR (400 MHz, CDCl3) δ 8.23 (d, J = 7.5 Hz, 2H), 7.86 (s, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.67–7.49 (m, 4H); 13C NMR (101 MHz, CDCl3) δ 166.0, 149.9, 145.9, 132.7, 129.1, 128.9, 128.1, 125.9, 120.9, 118.8, 114.8, 108.1.

6-Fluoro-2-phenylbenzoxazole (6d)

N-(4-Fluoro-2-iodophenyl)benzamide (100 mg, 0.29 mmol, 1.0 equiv.), K2CO3 (81 mg, 0.59 mmol, 2.0 equiv.), (IPr)CuCl (14.3 mg, 0.029 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 80% (50 mg, 0.23 mmol).

White solid; mp 105 °C (lit.27a 106–107 °C); 1H NMR (400 MHz, CDCl3) δ 8.25–8.16 (m, 2H), 7.71–765 (m, 1H), 7.57–7.45 (m, 3H), 7.29 (dd, J = 7.9, 2.0 Hz, 1H), 7.14–7.05 (m, 1H); 13C NMR (101 MHz, CDCl3) δ 163.7, 161.9, 159.5, 150.8, 150.6, 138.4, 131.6, 128.9, 127.5, 126.9, 120.3, 120.2, 112.7, 112.4, 98.8, 98.5.

6-Nitro-2-phenylbenzoxazole (6e)

N-(2-Iodo-4-nitrophenyl)benzamide (100 mg, 0.27 mmol, 1.0 equiv.), K2CO3 (75.1 mg, 0.54 mmol, 2.0 equiv.), (IPr)CuCl (13.3 mg, 0.027 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 55% (36 mg, 0.15 mmol).

White solid; mp 150 °C (lit.27b 150 °C); 1H NMR (400 MHz, CDCl3) δ 8.47 (d, J = 1.7 Hz, 1H), 8.31 (dd, J = 8.8, 1.9 Hz, 1H), 8.27 (d, J = 7.4 Hz, 2H), 7.83 (d, J = 8.8 Hz, 1H), 7.65–7.53 (m, 3H); 13C NMR (101 MHz, CDCl3) δ 167.4, 149.9, 147.4, 145.1, 132.9, 129.2, 128.3, 126.0, 120.1, 119.8, 107.2.

2-(4-Chlorophenyl)-benzoxazole (6f)

4-Chloro-N-(2-iodophenyl)benzamide (100 mg, 0.28 mmol, 1.0 equiv.), K2CO3 (77.3 mg, 0.56 mmol, 2.0 equiv.), (IPr)CuCl (13.7 mg, 0.028 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 86% (55 mg, 0.24 mmol).

4-Chloro-N-(2-bromophenyl)benzamide (70 mg, 0.23 mmol, 1.0 equiv.), K2CO3 (62.3 mg, 0.45 mmol, 2.0 equiv.), (IPr)CuCl (11 mg, 0.023 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 77% (40 mg, 0.17 mmol).

White solid; mp 148–150 °C (lit.5a 148–151 °C); 1H NMR (400 MHz, CDCl3) δ 8.22–8.13 (m, 2H), 7.79–7.73 (m, 1H), 7.59–7.53 (m, 1H), 7.52–7.44 (m, 2H), 7.39–7.32 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 162.2, 150.9, 142.1, 137.9, 129.4, 129.0, 125.8, 125.4, 124.9, 120.2, 110.7.

2-(4-Methoxyphenyl)-benzoxazole (6g)

N-(2-Iodophenyl)-4-methoxybenzamide (100 mg, 0.28 mmol, 1.0 equiv.), K2CO3 (78.3 mg, 0.57 mmol, 2.0 equiv.), (IPr)CuCl (13.8 mg, 0.028 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 82% (52 mg, 0.23 mmol).

N-(2-Bromophenyl)-4-methoxybenzamide (100 mg, 0.32 mmol, 1.0 equiv.), K2CO3 (90.3 mg, 0.65 mmol, 2.0 equiv.), (IPr)CuCl (16 mg, 0.033 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 75% (55 mg, 0.24 mmol).

White solid; mp 99–100 °C (lit.5a 99 °C); 1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 8.5 Hz, 2H), 7.97–7.92 (m, 1H), 7.75 (d, J = 6.9 Hz, 2H), 7.56–7.49 (m, 2H), 7.22 (d, J = 8.8, 2H), 4.07 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 163.2, 162.3, 150.7, 142.3, 129.4, 124.6, 124.4, 119.7, 119.6, 114.4, 110.4, 55.4.

2-(3,4-Dimethoxyphenyl)-benzoxazole (6h)

N-(2-Iodophenyl)-3,4-dimethoxybenzamide (100 mg, 0.26 mmol, 1.0 equiv.), K2CO3 (72 mg, 0.52 mmol, 2.0 equiv.), (IPr)CuCl (12.8 mg, 0.026 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 87% (58 mg, 0.23 mmol).

White solid; mp 110 °C (lit.5a 109–110 °C); 1H NMR (400 MHz, CDCl3) δ 7.86–7.78 (m, 1H), 7.76–7.68 (m, 2H), 7.56–7.48 (m, 1H), 7.35–7.27 (m, 2H), 6.99–6.90 (m, 1H), 3.99 (s, 3H), 3.92 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 163.1, 152.0, 149.2, 142.2, 124.7, 121.2, 119.8, 119.6, 111.0, 110.4, 110.0, 56.1, 56.0.

2-(p-Tolyl)-benzoxazole (6i)

N-(2-Iodophenyl)-4-methylbenzamide (70 mg, 0.21 mmol, 1.0 equiv.), K2CO3 (57.4 mg, 0.42 mmol, 2.0 equiv.), (IPr)CuCl (10.1 mg, 0.021 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 87% (38 mg, 0.18 mmol).

N-(2-Bromophenyl)-4-methylbenzamide (72 mg, 0.25 mmol, 1.0 equiv.), K2CO3 (68.6 mg, 0.50 mmol, 2.0 equiv.), (IPr)CuCl (12 mg, 0.025 mmol, 0.1 equiv.), DMF (2.0 mL). Yield: 79% (41 mg, 0.20 mmol).

White solid; mp 117 °C (lit.5a 117–118 °C); 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.0 Hz, 2H), 7.80–7.73 (m, 1H), 7.60–7.52 (m, 1H), 7.37–7.29 (m, 4H), 2.42 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 163.4, 150.8, 142.3, 142.1, 129.7, 127.7, 125.0, 124.6, 124.5, 120.0, 110.6, 21.7.

2-(o-Tolyl)-benzoxazole (6j)

N-(2-Iodophenyl)-2-methylbenzamide (111.6 mg, 0.34 mmol, 1.0 equiv.), K2CO3 (91.6 mg, 0.66 mmol, 2.0 equiv.), (IPr)CuCl (16.2 mg, 0.034 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 62% (43 mg, 0.21 mmol).

N-(2-Bromophenyl)-2-methylbenzamide (111.8 mg, 0.38 mmol, 1.0 equiv.), K2CO3 (106.4 mg, 0.78 mmol, 2.0 equiv.), (IPr)CuCl (19 mg, 0.038 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 56% (45 mg, 0.22 mmol).

White solid; mp 65 °C (lit.8a 68–69 °C); 1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 7.6 Hz, 1H), 7.86–7.79 (m, 1H), 7.63–7.56 (m, 1H), 7.46–7.31 (m, 5H), 2.83 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 163.4, 150.3, 142.2, 138.9, 131.8, 131.0, 130.0, 126.3, 126.1, 125.0, 124.4, 120.2, 110.5, 22.2.

2-Phenylbenzothiazole (8a)

N-(2-Iodophenyl)benzothioamide (150 mg, 0.44 mmol, 1.0 equiv.), K2CO3 (122 mg, 0.88 mmol, 2.0 equiv.), (IPr)CuCl (21.6 mg, 0.044 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 99% (108 mg, 0.51 mmol).

N-(2-Bromophenyl)benzothioamide (100 mg, 0.34 mmol, 1.0 equiv.), K2CO3 (94.6 mg, 0.68 mmol, 2.0 equiv.), (IPr)CuCl (16.5 mg, 0.034 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 98% (71 mg, 0.34 mmol).

N-(2-Chlorophenyl)benzothioamide (130 mg, 0.53 mmol, 1.0 equiv.), K2CO3 (145 mg, 1.05 mmol, 2.0 equiv.), (IPr)CuCl (25.6 mg, 0.053 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 84% (93 mg, 0.44 mmol).

White solid; mp 111 °C (lit.27b 111 °C); 1H NMR (400 MHz, CDCl3) δ 7.99–7.91 (m, 3H), 7.74 (d, J = 8.0 Hz, 1H), 7.52–7.47 (m, 4H), 7.23 (t, J = 7.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 168.1, 154.2, 135.1, 133.7, 131.0, 129.0, 127.6, 126.3, 125.2, 123.3, 121.7.

6-Methyl-2-phenylbenzothiazole (8b)

N-(2-Iodo-4-methylphenyl)benzothioamide (120 mg, 0.34 mmol, 1.0 equiv.), K2CO3 (94 mg, 0.68 mmol, 2.0 equiv.), (IPr)CuCl (17 mg, 0.034 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 98% (75 mg, 0.33 mmol).

White solid; mp 123–124 °C (lit.27a 124–125 °C); 1H NMR (400 MHz, CDCl3) δ 8.12–8.05 (m, 2H), 7.97 (d, J = 8.3 Hz, 1H), 7.67 (s, 1H), 7.53–7.44 (m, 3H), 7.30 (d, J = 8.3, 1H), 2.49 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 167.0, 152.3, 135.4, 135.3, 133.8, 130.8, 129.0, 128.0, 127.5, 122.8, 121.4, 21.6.

6-Chloro-2-phenylbenzothiazole (8c)

N-(4-Chloro-2-iodophenyl)benzothioamide (150 mg, 0.40 mmol, 1.0 equiv.), K2CO3 (111 mg, 0.80 mmol, 2.0 equiv.), (IPr)CuCl (19.6 mg, 0.040 mmol, 0.1 equiv.), DMF (3.5 mL). Yield: 90% (89 mg, 0.36 mmol).

White solid; mp 156 °C (lit.27a 156–157 °C); 1H NMR (400 MHz, CDCl3) δ 8.09–8.02 (m, 2H), 7.96 (d, J = 8.7 Hz, 1H), 7.85 (s, 1H), 7.51–7.47 (m, 3H), 7.44 (dd, J = 8.7, 1.9 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 168.5, 152.7, 136.2, 133.2, 131.3, 131.1, 129.1, 127.6, 127.1, 124.0, 121.2.

6-Fluoro-2-phenylbenzothiazole (8d)

N-(4-Fluoro-2-iodophenyl)benzothioamide (100 mg, 0.28 mmol, 1.0 equiv.), K2CO3 (77.4 mg, 0.56 mmol, 2.0 equiv.), (IPr)CuCl (13.7 mg, 0.028 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 90% (58 mg, 0.25 mmol).

White solid; mp 135 °C (lit.27a 133–134 °C); 1H NMR (400 MHz, CDCl3) δ 8.10–7.98 (m, 3H), 7.57 (d, J = 8.0 Hz, 1H), 7.50 (s, 1H), 7.22 (t, J = 8.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 167.8, 167.7, 161.7, 159.3, 150.8, 136.1, 136.0, 133.4, 131.0, 129.1, 127.4, 124.2, 124.1, 115.1, 114.8, 108.0, 107.7.

2-(4-Chlorophenyl)-benzothiazole (8e)

4-Chloro-N-(2-bromophenyl)benzothioamide (150 mg, 0.46 mmol, 1.0 equiv.), K2CO3 (127 mg, 0.92 mmol, 2.0 equiv.), (IPr)CuCl (22.4 mg, 0.046 mmol, 0.1 equiv.), DMF (3.5 mL). Yield: 97% (109 mg, 0.44 mmol).

White solid; mp 115–116 °C (lit.27c 116–117 °C); 1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.0 Hz, 1H), 7.54–7.43 (m, 3H), 7.39 (t, J = 8.4 Hz, 1H); .13C NMR (101 MHz, CDCl3) δ 166.6, 154.1, 137.0, 135.1, 132.1, 129.3, 128.7, 126.5, 125.4, 123.3, 121.7.

2-(4-Methoxyphenyl)-benzothiazole (8f)

N-(2-Bromophenyl)-4-methoxybenzothioamide (100 mg, 0.31 mmol, 1.0 equiv.), K2CO3 (86 mg, 0.62 mmol, 2.0 equiv.), (IPr)CuCl (15 mg, 0.031 mmol, 0.1 equiv.), DMF (3.0 mL). Yield: 92% (69 mg, 0.28 mmol).

White solid; mp 121–122 °C (lit.27c 122–123 °C); 1H NMR (400 MHz, CDCl3) δ 8.06–8.00 (m, 3H), 7.86 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 8.7 Hz, 2H), 3.85 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 167.9, 161.9, 154.3, 134.9, 129.1, 126.4, 126.2, 124.8, 122.8, 121.5, 114.4, 55.4.

Acknowledgements

This work was supported by Project RC-130006 CILIS, granted by fondo de Innovacion para la competitividad del Ministerio de Economía, Fomento y Turismo, Chile and Fondecyt Grant 1150307.

References

  1. (a) S. Aiello, G. Wells, E. L. Stone, H. Kadri, R. Bazzi, D. R. Bell, M. F. G. Stevens, C. S. Matthews, T. D. Bradshaw and A. D. Westwell, J. Med. Chem., 2008, 51, 5135 CrossRef CAS PubMed; (b) T. D. Bradshaw, D.-F. Shi, R. J. Schultz, K. D. Paull, L. Kelland, A. Wilson, C. Garner, H. Fiebig, S. Wrigley and M. F. G. Stevens, Br. J. Cancer, 1998, 78, 421 CrossRef CAS PubMed; (c) L. Leventhal, M. R. Brandt, T. A. Cummons, M. J. Piesla, K. E. Rogers and H. A. Harris, Eur. J. Pharmacol., 2006, 553, 146 CrossRef CAS PubMed; (d) J. Y. Hwang, D. C. Smithson, G. Holbrook, F. Zhu, M. C. Connelly, M. Kaiser, R. Brun and R. K. Guy, Bioorg. Med. Chem. Lett., 2013, 23, 4127 CrossRef CAS PubMed.
  2. (a) N. P. Prajapati, R. H. Vekariya, M. A. Borad and H. D. Patel, RSC Adv., 2014, 4, 60176 RSC; (b) A. A. Weekes and A. D. Westwell, Curr. Med. Chem., 2009, 16, 2430 CrossRef CAS PubMed; (c) S. Rudrawar, A. Kondaskar and A. K. Chakraborti, Synthesis, 2005, 2521 CAS; (d) I. Yildiz-Oren, I. Yalcin, E. Aki-Sener and N. Ucarturk, Eur. J. Med. Chem., 2004, 39, 291 CrossRef CAS PubMed ; and references therein.
  3. (a) A. Teimouri, A. N. Chermahini, H. Salavati and L. Ghorbanian, J. Mol. Catal. A: Chem., 2013, 373, 38 CrossRef CAS; (b) R. G. Kalklambkar and K. K. Laali, Tetrahedron Lett., 2012, 53, 4212 CrossRef; (c) H. M. Bachhav, S. B. Bhagat and V. N. Telvekar, Tetrahedron Lett., 2011, 52, 5697 CrossRef CAS; (d) F. Chen, C. Shen and D. Yang, Tetrahedron Lett., 2011, 52, 2128 CrossRef CAS; (e) H. Reyes, H. I. Beltran and E. Rivera-Becerril, Tetrahedron Lett., 2011, 52, 308 CrossRef CAS ; and references therein.
  4. For reviews, see: (a) J. E. R. Sadig and M. C. Willis, Synthesis, 2011, 1 CAS; (b) A. D. G. Evano, N. Blanchard and M. Toumi, Chem. Rev., 2008, 108, 3054 CrossRef PubMed.
  5. (a) A. Ahmed, R. Singha and J. K. Ray, Tetrahedron Lett., 2015, 56, 2167 CrossRef CAS; (b) Y. Wang, C. Wu, S. Nie, D. Xu, M. Yu and X. Yao, Tetrahedron Lett., 2015, 56, 6827 CrossRef CAS; (c) N. Khatum, S. Guin, S. K. Rout and B. K. Patel, RSC Adv., 2014, 4, 10770 RSC; (d) M. Mohammadi, G. R. Bardajee and N. N. Pesyan, RSC Adv., 2014, 4, 62888 RSC; (e) F. Wu, J. Zhang, Q. wei, P. Liu, J. Xie, H. Jiang and B. Dai, Org. Biomol. Chem., 2014, 12, 9696 RSC; (f) R. D. Viirre, G. Evindar and R. A. Batey, J. Org. Chem., 2008, 73, 3452 CrossRef CAS PubMed; (g) N. Barbero, M. Carril, R. SanMartin and E. Domínguez, Tetrahedron, 2007, 63, 10425 CrossRef CAS; (h) G. Evindar and R. A. Batey, J. Org. Chem., 2006, 71, 1802 CrossRef CAS PubMed; (i) G. Altenhoff and F. Glorius, Adv. Synth. Catal., 2004, 346, 1661 CrossRef CAS.
  6. (a) Y. Cheng, Q. Peng, W. Fan and P. Li, J. Org. Chem., 2014, 79, 5812 CrossRef CAS PubMed; (b) C. Benedí, F. Bravo, P. Uriz, E. Fernández, C. Claver and S. Castillon, Tetrahedron Lett., 2003, 44, 6073 CrossRef.
  7. (a) J. He, F. Lin, X. Yang, D. Wang, X. Tan and S. Zhang, Org. Process Res. Dev., 2016, 20, 1093 CrossRef CAS; (b) R. Hajipour, Z. Khorsandi, M. Mortazavi and H. Farrokhpour, RSC Adv., 2015, 5, 107822 RSC; (c) P. Saha, M. A. Ali, P. Ghosh and T. Punniyamurthy, Org. Biomol. Chem., 2010, 8, 5692 RSC.
  8. (a) K. Gopalaiah and S. N. Chandrudu, RSC Adv., 2015, 5, 5015 RSC; (b) J. Jadhav, V. Gaikwad, R. Kurane, R. Salunkhe and G. Rashinkar, Tetrahedron, 2013, 69, 2920 CrossRef CAS; (c) J. Bonnamour and C. Bolm, Org. Lett., 2008, 10, 2665 CrossRef CAS PubMed.
  9. For recent examples of metal-catalyzed reactions, see: (a) K. T. Neumann, A. T. Lindhardt, B. Bang-Andersen and T. Skrydstrup, Org. Lett., 2015, 17, 2094 CrossRef CAS PubMed; (b) D. B. Nale and B. M. Bhanage, Synlett, 2015, 26, 2835 CrossRef CAS; (c) X. Zhang, W. Zeng, Y. Yang, H. Huang and Y. Liang, Org. Lett., 2014, 16, 876 CrossRef CAS PubMed.
  10. For recent reports on C–H functionalization and C–H arylation routes see: (a) F. Abdellaoui, C. Youssef, H. B. Ammar, T. Roisnel, J.-F. Soulé and s Doucet, ACS Catal., 2016, 6, 4248 CrossRef CAS; (b) A. R. Tiwari and B. M. Bhanage, Org. Biomol. Chem., 2016, 14, 7920 RSC; (c) F. Zhu, J.-L. Tao and Z.-X. Wang, Org. Lett., 2015, 17, 4926 CrossRef CAS PubMed; (d) X.-B. Shen, Y. Zhang, W.-X. Chen, Z.-K. Xiao, T.-T. Hu and L.-X. Shao, Org. Lett., 2014, 16, 1984 CrossRef CAS PubMed; (e) D. M. Ferguson, S. R. Rudolph and D. Kalyani, ACS Catal., 2014, 4, 2395 CrossRef CAS PubMed; (f) F. Gao, B.-S. Kim and P. J. Walsh, Chem. Commun., 2014, 50, 10661 RSC; (g) X. Zhang, W. Zeng, Y. Yang, H. Huang and Y. Liang, Org. Lett., 2014, 16, 876 CrossRef CAS PubMed; (h) Q. Song, Q. Feng and M. Zhou, Org. Lett., 2013, 15, 5990 CrossRef CAS PubMed; (i) D. Liu, B. Liu and J. Cheng, RSC Adv., 2013, 3, 9193 RSC; (j) Y. Cheng, J. Yang, Y. Qu and P. Li, Org. Lett., 2012, 14, 98 CrossRef CAS PubMed; (k) K. Muto, J. Yamaguchi and K. Itami, J. Am. Chem. Soc., 2012, 134, 169 CrossRef CAS PubMed; (l) N. Park, Y. Heo, M. R. Kumar, Y. Kim, K. H. Song and S. Lee, Eur. J. Org. Chem., 2012, 1984 CrossRef CAS; (m) K. Xie, Z. Yang, X. Zhou, X. Li, S. Wang, Z. Tan, X. An and C.-C. Guo, Org. Lett., 2010, 12, 1564 CrossRef CAS PubMed.
  11. For reviews, see: (a) D. Yu, S. P. Teong and Y. Zhang, Coord. Chem. Rev., 2015, 293–294, 279 CrossRef CAS; (b) F. Lazreg, F. Nahra and C. S. J. Cazin, Coord. Chem. Rev., 2015, 293–294, 48 CrossRef CAS; (c) R. Visbal and M. C. Gimeno, Chem. Soc. Rev., 2014, 43, 3551 RSC; (d) K. Riener, S. Haslinger, A. Raba, M. P. Högerl, M. Cokoja, W. A. Herrmann and F. E. Kühn, Chem. Rev., 2014, 114, 5215 CrossRef CAS PubMed; (e) M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius, Nature, 2014, 510, 485 CrossRef CAS PubMed; (f) J. D. Egbert, C. S. J. Cazin and S. P. Nolan, Catal. Sci. Technol., 2013, 3, 912 RSC; (g) S. Gaillard, C. S. J. Cazin and S. P. Nolan, Acc. Chem. Res., 2012, 45, 778 CrossRef CAS PubMed; (h) H. Diaz-Velazquez and F. Verpoort, Chem. Soc. Rev., 2012, 41, 7032 RSC; (i) S. P. Nolan, Acc. Chem. Res., 2011, 44, 91 CrossRef CAS PubMed; (j) S. Díez-Gonzalez, N. Marion and S. P. Nolan, Chem. Rev., 2009, 109, 3612 CrossRef PubMed; (k) S. Díez-Gonzalez and S. P. Nolan, Aldrichimica Acta, 2008, 41, 43 Search PubMed; (l) S. Díez-Gonzalez and S. P. Nolan, Synlett, 2007, 2158 CrossRef; (m) E. A. B. Kantchev, C. J. O'Brien and M. G. Organ, Angew. Chem., Int. Ed., 2007, 46, 2768 CrossRef CAS PubMed.
  12. M. Trose, F. Lazreg, M. Lessieur and C. S. J. Cazin, J. Org. Chem., 2015, 80, 9910 CrossRef CAS PubMed.
  13. Y. D. Bidal, F. Lazreg and C. S. J. Cazin, ACS Catal., 2014, 4, 1564 CrossRef CAS.
  14. O. Santoro, F. Lazreg, Y. Minenkov, L. Cavallo and C. S. J. Cazin, Dalton Trans., 2015, 44, 18138 RSC.
  15. S. C. Schmid, R. V. Hoveln, J. W. Rigoli and J. M. Schomaker, Organometallics, 2015, 34, 4164 CrossRef CAS.
  16. (a) T. Vergote, F. Nahra, A. Merschaert, O. Riant, D. Peeters and T. Leyssens, Organometallics, 2014, 33, 1953 CrossRef CAS; (b) S. Díez-González and S. P. Nolan, Acc. Chem. Res., 2008, 41, 349 CrossRef PubMed; (c) S. Díez-González, N. M. Scott and S. P. Nolan, Organometallics, 2006, 25, 2355 CrossRef; (d) S. Díez-González, H. Kaur, F. K. Zinn, E. D. Stevens and S. P. Nolan, J. Org. Chem., 2005, 70, 4784 CrossRef PubMed; (e) H. Kaur, F. K. Zinn, E. D. Stevens and S. P. Nolan, Organometallics, 2004, 23, 1157 CrossRef CAS.
  17. T. Ohishi, M. Nishiura and Z. Hou, Angew. Chem., Int. Ed., 2008, 47, 5792 CrossRef CAS PubMed.
  18. (a) H. D. Velázquez, Y. R. García, M. Vandichel, A. Madder and F. Verpoort, Org. Biomol. Chem., 2014, 12, 9350 RSC; (b) C. W. D. Gallop, M.-T. Chen and O. Navarro, Org. Lett., 2014, 16, 3724 CrossRef CAS PubMed; (c) V. Russo, J. R. Herron and Z. T. Ball, Org. Lett., 2010, 12, 220 CrossRef CAS PubMed; (d) I. I. F. Boogaerts, G. C. Fortman, M. R. L. Furst, C. S. J. Cazin and S. P. Nolan, Angew. Chem., Int. Ed., 2010, 49, 8674 CrossRef CAS PubMed; (e) H. Lebel, M. Davi, S. Díez-González and S. P. Nolan, J. Org. Chem., 2007, 72, 144 CrossRef CAS PubMed; (f) A. Welle, S. Díez-González, B. Tinant, S. P. Nolan and O. Riant, Org. Lett., 2006, 8, 6059 CrossRef CAS PubMed.
  19. (a) O. Songis, P. Boulens, C. G. M. Benson and C. S. J. Cazin, RSC Adv., 2012, 2, 11675 RSC; (b) C. E. Ellul, G. Reed, M. F. Mahon, S. I. Pascu and M. K. Whittlesey, Organometallics, 2010, 29, 4097 CrossRef CAS.
  20. (a) J. Chun, H. S. Lee, I. G. Jung, S. W. Lee, H. J. Kim and S. U. Son, Organometallics, 2010, 29, 1518 CrossRef CAS; (b) C. A. Citadelle, E. Le Nouy, F. Bisaro, A. M. Z. Slawin and C. S. J. Cazin, Dalton Trans., 2010, 39, 4489 RSC; (c) V. Jurkauskas, J. P. Sadighi and S. L. Buchwald, Org. Lett., 2003, 5, 2417 CrossRef CAS PubMed.
  21. X. Bantreil and S. P. Nolan, Nat. Protoc., 2011, 6, 69 CrossRef CAS PubMed.
  22. (a) H. Lin and D. Sun, Org. Prep. Proced. Int., 2013, 45, 341 CrossRef CAS PubMed; (b) S. K. Sahoo, A. Banerjee, S. Chakraborty and B. K. Patel, ACS Catal., 2012, 2, 544 CrossRef CAS; (c) E. A. Jaseer, D. J. C. Prasad, A. Dandapat and G. Sekar, Tetrahedron Lett., 2010, 51, 5009 CrossRef CAS; (d) P. Saha, T. Ramana, N. Purkait, M. A. Ali, R. Paul and T. Punniyamurthy, J. Org. Chem., 2009, 74, 8719 CrossRef CAS PubMed.
  23. X. Ribas and I. Güell, Pure Appl. Chem., 2014, 86, 345 CrossRef CAS.
  24. M. jesberger, T. P. Davis and L. Barner, Synthesis, 2003, 1929 CrossRef CAS.
  25. J. Liu, Y. Deng, C. Lin and A. Lei, Chem. Sci., 2012, 3, 1211 RSC.
  26. (a) C. Sambiagio, S. P. Marsden, A. J. Blacker and P. C. McGowan, Chem. Soc. Rev., 2014, 43, 3525 RSC; (b) M. Font, T. Parella, M. Costas and X. Ribas, Organometallics, 2012, 31, 7976 CrossRef CAS.
  27. (a) S. K. Alla, P. Sadhu and T. Punniyamurthy, J. Org. Chem., 2014, 79, 7502 CrossRef CAS PubMed; (b) V. S. Padalkar, V. D. Gupta, K. R. Phatangare, V. S. Patil, P. G. Umape and N. Sekar, Green Chem. Lett. Rev., 2012, 5, 139 CrossRef CAS; (c) Y. Riadi, R. Mamouni, R. Azzalou, M. E. Haddad, S. Routier, G. Guillaumet and S. Lazar, Tetrahedron Lett., 2011, 52, 3492 CrossRef CAS.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra18510j

This journal is © The Royal Society of Chemistry 2016
Click here to see how this site uses Cookies. View our privacy policy here.