Cu(I)-catalyzed multicomponent cascade reactions of terminal alkynes, unactivated primary alkyl bromides, CO2 and NaN3

Fu-song Wu a, Wei Tonga, Ying Liang*b, Heng-shan Wanga, Qing-hu Tenga and Ying-ming Pan*a
aState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China. E-mail: panym2013@hotmail.com; Fax: +86-773-5803930
bSchool of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China. E-mail: liangyi0774@guet.edu.cn; Fax: +86-773-2191683

Received 19th May 2016 , Accepted 27th June 2016

First published on 29th June 2016


Abstract

A multicomponent synthesis of a variety of triazolo-fused dihydrooxazinones was realized via the carboxylative coupling/cycloaddition of alkynes, unactivated primary alkyl bromides, carbon dioxide and sodium azide. This transformation was catalyzed by CuCl/PPh3.


Carbon dioxide (CO2) causes global warming and a consequent series of environmental problems,1 meanwhile, is an attractive, abundant, inexpensive, and nontoxic one-carbon source.2 Indeed, the eliminations and applications of carbon dioxide continue to drive the interest in the development of new approaches to transform carbon dioxide into high-value chemicals. Among them, the most commonly used method is the well-known incorporation of carbon dioxide into alkyne derivatives in the presence of transition-metal catalysts to produce propiolic acids,3 which has been used to synthesise various heterocyclic compounds.4 Additionally, CO2 has also been transformed into α,β-unsaturated carboxylic acids,5 2-oxazolidinones,6 allylic 2-alkynoates,7 cyclic carbonates,8 heteroaromatic carboxylic acid derivatives,9 lactones,10 acids11 and so on. Although these reported methods have proved useful in the eliminations and applications of carbon dioxide, the transformations of the carboxylation products into functionalization commodity chemicals have emerged as an attractive and challenging goal.

1,2,3-Triazoles are important N-heterocycles12 which have received much attention for their unique properties in agrochemicals and industrial applications and biological activities (Fig. 1).13 In particularly, triazolo-fused dihydrooxazinones with privileged polyheterocycles, which dramatically enhances the expandability of their molecular diversity.14 To date, 1,2,3-triazoles can be accessible from azides and alkynes in good to excellent yields under mild conditions.15 While, to the best of our knowledge, there have been no reports of preparation of triazolo-fused dihydrooxazinones from alkynes, unactivated primary alkyl bromides, carbon dioxide and sodium azide. As our continuous efforts in the capture CO2 into valuable chemicals16 and the development of efficient methods for the preparation of N-heterocycles,17 herein we report an efficient, one-pot and multicomponent synthesis of triazolo-fused dihydrooxazinones from alkynes, unactivated primary alkyl bromides, carbon dioxide and sodium azide via a carboxylative coupling/cycloaddition process.


image file: c6ra13080a-f1.tif
Fig. 1 Representative examples of biologically active molecules containing 1,2,3-triazoles.

The carboxylative coupling reaction of ethynylbenzene (1a), 1,2-dibromoethane (2a) and CO2 was chosen as a model reaction to identify an effective catalytic system and optimize the reaction conditions (Table 1). Initially, the reaction was carried out in the presence of CuCl (10 mol%), PPh3 (10 mol%), in DMF at 60 °C for 12 h, and monitored periodically by TLC. Upon completion and after cooling, NaN3 (1 equiv.) was added to the reaction mixture at r.t. and stirring for another 3 h to afford the desired product 4a in 65% yield (Table 1, entry 1). An increase in the temperature from 60 °C to 80 °C resulted in the desired product in higher yields, but when we raised the temperature to 90 °C, only 41% of 4a was isolated (Table 1, entries 1–4). To further optimize the conditions, we adjusted PPh3 to 20 mol% and 30 mol%, but no obvious improvement in yields could be observed (Table 1, entries 5 and 6). A variety of copper catalysts, such as CuI, CuBr, and Cu2O, were also screened; however, no superior yields were obtained and that CuCl was optimal (Table 1, entry 3 vs. entries 7–9). Subsequently, a solvent screening study indicated that DMF was the most suitable solvent for this transformation (Table 1, entry 3 vs. entries 10–12). Moreover, the control experiments indicated that a combination of CuCl and PPh3 was indispensable in this reaction (Table 1, entries 13 and 14). Therefore, the optimal conditions for this transformation are CuCl (10 mol%) and PPh3 (10 mol%), in DMF at 80 °C for 12 h, then NaN3 (1 equiv.) was added to the reaction mixture at r.t. and stirring for another 3 h.

Table 1 Optimization of reaction conditionsa

image file: c6ra13080a-u1.tif

Entry [Cu] PPh3 (mol%) Solvent Temperature (°C) Yieldb (%)
a Reaction conditions: 1a (0.5 mmol), 2a (0.6 mmol), [Cu] (10 mol%), PPh3 (10 mol%), Cs2CO3 (1.2 equiv.), NaN3 (0.4 mmol), solvent (2 mL), 12 h.b Isolated yields (based on NaN3).
1 CuCl 10 DMF 60 65
2 CuCl 10 DMF 70 70
3 CuCl 10 DMF 80 80
4 CuCl 10 DMF 90 41
5 CuCl 20 DMF 80 82
6 CuCl 30 DMF 80 81
7 CuI 10 DMF 80 70
8 CuBr 10 DMF 80 63
9 Cu2O 10 DMF 80 45
10 CuCl 10 Toluene 80 Trace
11 CuCl 10 CH3CN 80 Trace
12 CuCl 10 DMA 80 13
13 CuCl DMF 80 0
14 10 DMF 80 0


With the optimal conditions in hand, we next extensively evaluated the substrate scope and functional group tolerance of this reaction (Table 2). Gratifyingly, it was observed that a wide range of ethynylbenzenes were well tolerated, providing the corresponding triazolo-fused dihydrooxazinones in good to excellent yields. Electron-rich ethynylbenzenes facilitated the reaction with excellent yields (4b–4g). When 1d was used, the side-product ethane-1,2-diyl bis(3-(4-propylphenyl)propiolate) (3d) was detected by TLC (see ESI). Ethynylbenzenes bearing electron-withdrawing substituents on the aryl ring were also found to be suitable substrates for this reaction with high yields (4h and 4i). As the above results shown, both the electron-rich ethynylbenzenes and electron-poor ethynylbenzenes are work rapidly under the standard conditions to form the corresponding products in good to excellent yields. To our delight, the ethynylbenzenes 1j and 1k possessing an electron-donating group at the meta-position of phenyl ring reacted readily to afford the desired products 4j and 4k in 84% and 90% yield, respectively. The structure of 4k was confirmed unambiguously by X-ray diffraction analysis (Fig. 2). However, a substrate with steric hindrance (o-CH3), only a trace amount of 4l was detected under the standard conditions. In addition, 2-ethynylnaphthalene and heterocyclic substrates participated well and furnished the corresponding products 4m and 4n in good yields. It is noted that aliphatic alkynes (1o) also work smoothly to produce the desired product 4o in 82% yield.

Table 2 Synthesis of triazolo-fused dihydrooxazinonesa,b

image file: c6ra13080a-u2.tif

a Reaction conditions: 1 (0.5 mmol), 2a (0.6 mmol), CuCl (10 mol%), PPh3 (10 mol%), Cs2CO3 (1.2 equiv.), NaN3 (0.4 mmol), DMF (2 mL), at 80 °C, 12 h.b Isolated yields (based on NaN3).c The by-product was 3d (18%) (based on 1d) (see ESI).
image file: c6ra13080a-u3.tif



image file: c6ra13080a-f2.tif
Fig. 2 X-ray crystal structure of triazolo-fused dihydrooxazinone 4k. (CCDC 1479362 contains the supplementary crystallographic data for this paper).

Next, we focused our attention on a more challenging scenario dealing with a longer chain structure, such as 1,3-dibromopropane (Scheme 1). Unfortunately, when 1,3-dibromopropane (2b) was used as a reaction partner, only a trace amount of 4p was detected under the standard conditions.


image file: c6ra13080a-s1.tif
Scheme 1 Copper(I)/phosphine-catalyzed carboxylative coupling/cycloaddition of ethynylbenzene, 1,3-dibromopropane, CO2 and NaN3.

To investigate the reaction mechanism, control experiments were performed and the results are presented in Scheme 2. The reaction of ethynylbenzene (1a), 1,2-dibromoethane (2a) and CO2 in the presence of CuCl (10 mol%) and PPh3 (10 mol%), in DMF at 80 °C for 12 h afforded the product of 3a in 86% isolated yield. Subsequently, 3a reacted with NaN3 (1 equiv.) in DMF at r.t. for 3 h and provided 4a in 93% yield.18 While, the reaction of ethynylbenzene (1a) with 1,2-dibromoethane (2a) in the atmosphere of Ar instead of CO2 could not afford the desired product 3a under the standard conditions, which confirmed that CO2 has been incorporated into ethynylbenzene.


image file: c6ra13080a-s2.tif
Scheme 2 Control experiments.

On the basis of above results, a plausible mechanism is proposed in Scheme 3. At first, the incorporation of CO2 into terminal alkyne (1a) promoted by the CuCl/PPh3, followed by, coupled with 1,2-dibromoethane (2a) and delivered propiolic acid ester 3a. The subsequent reaction of propiolic acid ester 3a with NaN3 affording organic azide 7. Finally, a [3 + 2] cycloaddition reaction of the intermediate organic azide 7 resulted in the formation of the desired product 4a.


image file: c6ra13080a-s3.tif
Scheme 3 Plausible mechanism.

In conclusion, we have developed a mild, robust, and multicomponent cascade reaction for the synthesis of triazolo-fused dihydrooxazinones via carboxylative coupling/[3 + 2] cycloaddition of terminal alkynes, unactivated primary alkyl bromides, carbon dioxide and sodium azide. This transformation features good yields, easily available starting materials, a broad range of substrates and multi-component cascade reactions, thus enabling the formation of triazolo-fused dihydrooxazinones that cannot be accessed effectively by other means. Moreover, the incorporation of CO2 into terminal alkynes was carried out at 1 atm of CO2 by balloon. Further studies on the applications of triazolo-fused dihydrooxazinones in drug discovery are currently ongoing in our laboratory.

Acknowledgements

We would like to thank the National Natural Science Foundation of China (21362002, 41465009 and 81260472), Guangxi Natural Science Foundation of China (2014GXNSFDA118007), State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2014-A02 and CMEMR2012-A20), Guangxi's Medicine Talented Persons Small Highland Foundation (1306), and The Fund of Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization (FPRU2015-2) for financial support.

Notes and references

  1. X.-H. Liu, J.-G. Ma, Z. Niu, G.-M. Yang and P. Cheng, Angew. Chem., Int. Ed., 2015, 54, 988 CrossRef CAS PubMed.
  2. S. Wang, P. Shao, C. Chen and C.-J. Xi, Org. Lett., 2015, 17, 5112 CrossRef CAS PubMed.
  3. (a) X. Zhang, W.-Z. Zhang, X. Ren, L.-L. Zhang and X.-B. Lu, Org. Lett., 2011, 13, 2042 CrossRef PubMed; (b) J. D. Goodreid, P. A. Duspara, C. Bosch and R. A. Batey, J. Org. Chem., 2014, 79, 943 CrossRef CAS PubMed; (c) S. H. Kim, K. H. Kim and S. H. Hong, Angew. Chem., Int. Ed., 2014, 53, 771 CrossRef CAS PubMed.
  4. (a) S. Kikuchi, K. Sekine, T. Ishida and T. Yamada, Angew. Chem., Int. Ed., 2012, 51, 6989 CrossRef CAS PubMed; (b) J.-N. Xie, B. Yu, C.-X. Guo and L.-N. He, Green Chem., 2015, 17, 4061 RSC; (c) N. Eghbali, J. Eddy and P. T. Anastas, J. Org. Chem., 2008, 73, 6932 CrossRef CAS PubMed; (d) E. Schreiner, S. Braun, C. Kwasnitschka, W. Frank and T. J. J. Müller, Adv. Synth. Catal., 2014, 356, 3135 CrossRef CAS; (e) E. Schreiner, T. Wilcke and T. J. J. Müller, Synlett, 2016, 27, 379 CAS.
  5. (a) M. Takimoto, K. Shimizu and M. Mori, Org. Lett., 2001, 3, 3345 CrossRef CAS PubMed; (b) X.-Q. Wang, M. Nakajima and R. Martin, J. Am. Chem. Soc., 2015, 137, 8924 CrossRef CAS PubMed; (c) J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2008, 130, 15254 CrossRef CAS PubMed; (d) T. Fujihara, T. Xu, K. Semba, J. Terao and Y. Tsuji, Angew. Chem., Int. Ed., 2011, 50, 523 CrossRef CAS PubMed; (e) X. Q. Wang, Y. Liu and R. Martin, J. Am. Chem. Soc., 2015, 137, 6476 CrossRef CAS PubMed.
  6. J.-Y. Hu, J. Ma, Q.-G. Zhu, Z.-F. Zhang, C.-Y. Wu and B.-X. Han, Angew. Chem., Int. Ed., 2015, 54, 5399 CrossRef CAS PubMed.
  7. W.-Z. Zhang, W.-J. Li, X. Zhang, H. Zhou and X.-B. Lu, Org. Lett., 2010, 12, 4748 CrossRef CAS PubMed.
  8. (a) M.-S. Liu, L. Liang, X. Li, X.-X. Gao and J.-M. Sun, Green Chem., 2016, 18, 2851 RSC; (b) Y.-B. Wang, Y.-M. Wang, W.-Z. Zhang and X.-B. Lu, J. Am. Chem. Soc., 2013, 135, 11996 CrossRef CAS PubMed; (c) C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adán, E. Martin and A. W. Kleij, J. Am. Chem. Soc., 2013, 135, 1228 CrossRef CAS PubMed; (d) M. H. Beyzavi, R. C. Klet, S. Tussupbayev, J. Borycz, N. A. Vermeulen, C. J. Cramer, J. F. Stoddart, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2014, 136, 15861 CrossRef CAS PubMed; (e) J. A. Kozak, J. Wu, X. Su, F. Simeon, T. Alan Hatton and T. F. Jamison, J. Am. Chem. Soc., 2013, 135, 18497 CrossRef CAS PubMed; (f) V. D'Elia, H. Dong, A. J. Rossini, C. M. Widdifield, S. V. C. Vummaleti, Y. Minenkov, A. Poater, E. Abou-Hamad, J. R. D. A. Pelletier, L. Cavallo, L. Emsley and J.-M. Basset, J. Am. Chem. Soc., 2015, 137, 7728 CrossRef PubMed; (g) Y. Kayaki, M. Yamamoto and T. Ikariya, Angew. Chem., Int. Ed., 2009, 48, 4194 CrossRef CAS PubMed.
  9. S. Fenner and L. Ackermann, Green Chem., 2016, 18, 3804 RSC.
  10. (a) K. Sasano, J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2013, 135, 10954 CrossRef CAS PubMed; (b) K. Sekine, Y. Sadamitsu and T. Yamada, Org. Lett., 2015, 17, 5706 CrossRef CAS PubMed.
  11. (a) T. Fujihara, K. Nogi, T. Xu, J. Terao and Y. Tsuji, J. Am. Chem. Soc., 2012, 134, 9106 CrossRef CAS PubMed; (b) T. Leon, A. Correa and R. Martin, J. Am. Chem. Soc., 2013, 135, 1221 CrossRef CAS PubMed; (c) T. Moragas, J. Cornella and R. Martin, J. Am. Chem. Soc., 2014, 136, 17702 CrossRef CAS PubMed; (d) A. Correa and R. Martin, J. Am. Chem. Soc., 2009, 131, 15974 CrossRef CAS PubMed; (e) M. D. Greenhalgh and S. P. Thomas, J. Am. Chem. Soc., 2012, 134, 11900 CrossRef CAS PubMed; (f) Y. Liu, J. Cornella and R. Martin, J. Am. Chem. Soc., 2014, 136, 11212 CrossRef CAS PubMed; (g) Y. Masuda, N. Ishida and M. Murakami, J. Am. Chem. Soc., 2015, 137, 14063 CrossRef CAS PubMed; (h) A. Correa, T. Leon and R. Martin, J. Am. Chem. Soc., 2014, 136, 1062 CrossRef CAS PubMed; (i) T. Moragas, M. Gaydou and R. Martin, Angew. Chem., Int. Ed., 2016, 55, 5053 CrossRef CAS PubMed.
  12. (a) Y.-M. Zhao, P.-M. Gu, Y.-Q. Tu, H.-J. Zhang, Q.-W. Zhang and C.-A. Fan, J. Org. Chem., 2010, 75, 5289 CrossRef CAS PubMed; (b) S. Röper, M. H. Franz, R. Wartchow and H. M. R. Hoffmann, Org. Lett., 2003, 5, 2773 CrossRef PubMed.
  13. (a) A. Krasiński, Z. Radić, R. Manetsch, J. Raushel, P. Taylor, K. B. Sharpless and H. C. Kolb, J. Am. Chem. Soc., 2005, 127, 6686 CrossRef PubMed; (b) B. M. J. M. Suijkerbuijk, B. N. H. Aerts, H. P. Dijkstra, M. Lutz, A. L. Spek, G. V. Koten and R. J. M. K. Gebbink, Dalton Trans., 2007, 1273 RSC; (c) I. Antonini, G. Santoni, R. Lucciarini, C. Amantini, S. Sparapani and A. Magnano, J. Med. Chem., 2006, 49, 7198 CrossRef CAS PubMed; (d) H.-Y. Hsieh, W.-C. Lee, G. C. Senadi, W.-P. Hu, J.-J. Liang, T.-R. Tsai, Y.-W. Chou, K.-K. Kuo, C.-Y. Chen and J.-J. Wang, J. Med. Chem., 2013, 56, 5422 CrossRef CAS PubMed; (e) R. A. Brawn, M. Welzel, J. T. Lowe and J. S. Panek, Org. Lett., 2010, 12, 336 CrossRef CAS PubMed; (f) Y.-Q. Ning, N.-N. Wu, H.-F. Yu, P.-Q. Liao, X.-Q. Li and X.-H. Bi, Org. Lett., 2015, 17, 2198 CrossRef CAS PubMed; (g) G. Biagia, I. Giorgi, O. Livi, V. Scartoni, L. Betti, G. Giannaccinib and M. L. Trincavelli, Eur. J. Med. Chem., 2002, 37, 565 CrossRef; (h) H. B. Nulwala, C. N. Tang, B. W. Kail, K. Damodaran, P. Kaur, S. Wickramanayake, W. Shic and D. R. Luebke, Green Chem., 2011, 13, 3345 RSC.
  14. D. Lim and S. B. Park, Chem.–Eur. J., 2013, 19, 7100 CrossRef CAS PubMed.
  15. (a) L. Moynihan, R. Chadda, P. McArdle and P. V. Murphy, Org. Lett., 2015, 17, 6226 CrossRef CAS PubMed; (b) A. Gümüş, K. Mert and C. Tanyeli, Helv. Chim. Acta, 2014, 97, 1340 CrossRef; (c) C. Girard, E. Önen, M. Aufort, S. Beauvière, E. Samson and J. Herscovici, Org. Lett., 2006, 8, 1689 CrossRef CAS PubMed; (d) A. E. Cohrt, J. F. Jensen and T. E. Nielsen, Org. Lett., 2010, 12, 5414 CrossRef CAS PubMed; (e) R. H. Vekariya, R. Liu and J. Aubé, Org. Lett., 2014, 16, 1844 CrossRef CAS PubMed; (f) Z.-Q. Liu, D.-Q. Zhu, B.-L. Luo, N.-Y. Zhang, Q. Liu, Y.-M. Hu, R.-B. Pi, P. Huang and S.-J. Wen, Org. Lett., 2014, 16, 5600 CrossRef CAS PubMed; (g) W.-Y. Qian, H. Wang and J. Allen, Angew. Chem., Int. Ed., 2013, 52, 10992 CrossRef CAS PubMed; (h) J. Thomas, J. John, N. Parekh and W. Dehaen, Angew. Chem., Int. Ed., 2014, 53, 10155 CrossRef CAS PubMed; (i) Z.-Y. Yan, Y.-J. Xiao and L.-M. Zhang, Angew. Chem., Int. Ed., 2012, 51, 8624 CrossRef CAS PubMed.
  16. Q. Gao, X.-C. Tan, Y.-M. Pan, H.-S. Wang and Y. Liang, Chem. Commun., 2012, 48, 12080 RSC.
  17. (a) Q.-H. Teng, Y.-L. Xu, Y. Liang, H.-S. Wang, Y.-C. Wang and Y.-M. Pan, Adv. Synth. Catal., 2016, 358, 1897 CrossRef CAS; (b) X. Wang, Y.-M. Pan, X.-C. Huang, Z.-Y. Mao and H.-S. Wang, Org. Biomol. Chem., 2014, 12, 2028 RSC; (c) X. Wang, S.-Y. Li, Y.-M. Pan, H.-S. Wang, H. Liang, Z.-F. Chen and X.-H. Qin, Org. Lett., 2014, 16, 580 CrossRef CAS PubMed; (d) P. Liu, J.-L. Liu, H.-S. Wang, Y.-M. Pan, H. Liang and Z.-F. Chen, Chem. Commun., 2014, 50, 4795 RSC; (e) H.-Z. Xie, Q. Gao, Y. Liang, H.-S. Wang and Y.-M. Pan, Green Chem., 2014, 16, 2132 RSC.
  18. A. I. Oliva, U. Christmann, D. Font, F. Cuevas, P. Ballester, H. Buschmann, A. Torrens, S. Yenes and M. A. Pericàs, Org. Lett., 2008, 10, 1617 CrossRef CAS PubMed.

Footnotes

Electronic supplementary information (ESI) available. CCDC 1479362. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ra13080a
These authors contributed equally to this work.

This journal is © The Royal Society of Chemistry 2016
Click here to see how this site uses Cookies. View our privacy policy here.