Efficient, high yield perovskite/fullerene planar-heterojunction solar cells via one-step spin-coating processing†
Abstract
In this paper, we report the fabrication of high crystalline perovskite film planar-heterojunction solar cells by a facile one-step spin-coating technique with improved control of thermal annealing time and solution concentration. We used an indium-doped tin oxide glass/poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) substrate as the hole transport layer, a PHJ of CH3NH3PbI3 perovskite fabricated by one-step spin-coating processing as the active layer and fullerene structure as the electron transport layer, a thin bathocuproine (BCP) film as an hole-blocking layer (HBL), and an aluminum (Al) layer as the negative electrode. The optimized device under AM 1.5 (100 mW cm−2) radiation achieved a high efficiency of 12.21% with an open circuit voltage of 0.83 V and FF of 0.68. Meanwhile, the devices do not show obvious hysteresis photovoltaic response, which has been a fundamental bottleneck for perovskite devices. The effects of MAI concentration and annealing time on the solar cells were also discussed on the basis of experimental observations.
Please wait while we load your content...