Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In the present study, CoS2 thin-film electrodes are synthesized at different bath temperatures using a simple chemical bath deposition (CBD) method. The bath temperature controls the phase stability of the CoS2 thin film along the in-plane direction up to 353 K. However, at 363 K, an oxide phase is included in the film. X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed enhanced crystallinity of CoS2 as the bath temperature increased and evolution in surface morphology from immature nanoflakes to well-grown aligned mature nanoflakes. A specific capacitance of 800 F g−1 is obtained from cyclic voltammetry measurements by utilizing the 83.6 m2 g−1 surface area of CoS2 nanoflakes synthesized at 353 K. The hierarchical distribution of pores gives rise to a high specific energy and specific power of 40.74 W h kg−1 and 3333 W kg−1, respectively, as a result of utilization of the high electrochemically active surface area. Furthermore, good long-term cycling stability of CoS2 nanoflakes has been observed in a 2 M KOH electrolyte. A low impedance value suggests that the CoS2 nanoflake electrode prepared by a facile CBD method is a potential candidate for supercapacitor application.

Graphical abstract: Bath temperature controlled phase stability of hierarchical nanoflakes CoS2 thin films for supercapacitor application

Page: ^ Top